首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
4.
RASSF1A(Ras association domain family 1 isoform A)是定位于染色体3p21.3区域的抑瘤基因,编码一个由340个氨基酸残基构成的微管相关蛋白.该基因在包括恶性黑色素瘤在内的多种肿瘤中因启动子高甲基化而表达沉默.本研究建立了RASSF1A稳定表达的恶性黑色素瘤A375细胞系,通过全基因组表达谱基因芯片分析RASSF1A过表达对A375细胞基因表达谱的影响,发现RASSF1A引起184个基因表达上调,26个基因表达下调.通过Realtime RT-PCR对部分差异表达基因进行验证,结果表明与芯片筛选结果一致.RASSF1A影响的差异表达基因功能上归属于细胞生长与增殖、细胞周期、细胞凋亡、细胞间黏附、信号传导等生物过程.采用STRING软件构建了RASSF1A影响的差异表达基因调控网络,结果表明RASSF1A调控的差异表达基因构成一个高连接度的基因网络.其中,炎症细胞因子、转录因子位于网络中央.RASSF1A通过影响炎症细胞因子与转录因子之间的表达,影响A375细胞基因网络,调节黑色素瘤恶性生物学行为.  相似文献   

5.
An aurora kinase is essential for flagellar disassembly in Chlamydomonas   总被引:3,自引:0,他引:3  
Cilia and flagella play key roles in development and sensory transduction, and several human disorders, including polycystic kidney disease, are associated with the failure to assemble cilia. Here, we show that the aurora protein kinase CALK in the biflagellated alga Chlamydomonas has a central role in two pathways for eliminating flagella. Cells rendered deficient in CALK were defective in regulated flagellar excision and regulated flagellar disassembly. Exposure of cells to altered ionic conditions, the absence of a centriole/basal body for nucleating flagellar assembly, cessation of delivery of flagellar components to their tip assembly site, and formation of zygotes all led to activation of the regulated disassembly pathway as indicated by phosphorylation of CALK and the absence of flagella. We propose that cells have a sensory pathway that detects conditions that are inappropriate for possession of a flagellum, and that CALK is a key effector of flagellar disassembly in that pathway.  相似文献   

6.
Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.  相似文献   

7.
8.
9.
10.
11.
The main aims of this study were to determine the effects of GH gene abuse/misuse in normal animals and to discover genes that could be used as candidate biomarkers for the detection of GH gene therapy abuse/misuse in humans. We determined the global gene expression profile of peripheral whole blood from normal adult male rats after long-term GH gene therapy using CapitalBio 27 K Rat Genome Oligo Arrays. Sixty one genes were found to be differentially expressed in GH gene-treated rats 24 weeks after receiving GH gene therapy, at a two-fold higher or lower level compared to the empty vector group (p < 0.05). These genes were mainly associated with angiogenesis, oncogenesis, apoptosis, immune networks, signaling pathways, general metabolism, type I diabetes mellitus, carbon fixation, cell adhesion molecules, and cytokine-cytokine receptor interaction. The results imply that exogenous GH gene expression in normal subjects is likely to induce cellular changes in the metabolism, signal pathways and immunity. A real-time qRT-PCR analysis of a selection of the genes confirmed the microarray data. Eight differently expressed genes were selected as candidate biomarkers from among these 61 genes. These 8 showed five-fold higher or lower expression levels after the GH gene transduction (p < 0.05). They were then validated in real-time PCR experiments using 15 single-treated blood samples and 10 control blood samples. In summary, we detected the gene expression profiles of rat peripheral whole blood after long-term GH gene therapy and screened eight genes as candidate biomarkers based on the microarray data. This will contribute to an increased mechanistic understanding of the effects of chronic GH gene therapy abuse/misuse in normal subjects.  相似文献   

12.
Chlamydomonas cells respond to certain environmental stimuli by shedding their flagella. Flagellar loss induces a rapid, transient increase in expression of a specific set of genes encoding flagellar proteins, and assembly of a new flagellar pair. While flagellar gene expression and initiation of flagellar outgrowth are normally tightly coupled to flagellar excision, our results demonstrate that these processes can be uncoupled by manipulating Ca2+ levels or calmodulin activity. In our experiments, wild-type cells were stimulated to excise their flagella using mechanical shearing, and at times after deflagellation, flagellar lengths were measured and flagellar mRNA abundance changes were determined by S1 nuclease protection analysis. When extracellular Ca2+ was lowered by addition of EGTA to cultures before excision, flagellar mRNA abundance changes and flagellar outgrowth were temporally uncoupled from flagellar excision. When extracellular Ca2+ was lowered immediately after excision or when calmodulin activity was inhibited with W-7, flagellar outgrowth was uncoupled from flagellar excision and flagellar mRNA abundance changes. Whenever events in the process of flagellar regeneration were temporally uncoupled, the magnitude of the flagellar mRNA abundance change was reduced. These results suggest that flagellar gene expression may be regulated by multiple signals generated from these events, and implicate Ca2+ as a factor in the mechanisms controlling flagellar regeneration.  相似文献   

13.
14.
15.
The mechanisms that control organelle size are unknown. Flagellar length regulation is the most accessible of all organelle-size-control problems, and experiments on flagellar assembly have provided important clues to how flagellar length is controlled, as a balance of assembly and disassembly. I propose that the inherent length dependence of intraflagellar transport might be what allows the flagellum to reach a defined length. This model of the flagellum might represent a general scheme for organelle size control that could apply to any organelle whose maintenance involves continuous assembly balanced by disassembly.  相似文献   

16.
17.
During flagellar morphogenesis in Salmonella typhimurium, the genes involved in filament assembly are expressed fully only after completion of hook-basal body assembly. This coupling of gene expression to morphogenesis is achieved by exporting the flagellum-specific anti-sigma factor, FlgM, out of the cell through the mature hook-basal body structure. Therefore, the flagellum-specific export apparatus must be able to sense the assembly state of the flagellar structure and to turn on FlgM export at a specific stage of hook assembly. It has been suggested that FlhB may act as the molecular switch which mediates this ordered export. Here, I report genetic evidence that in addition to FlhB, the product of a newly identified gene, rflH, is involved in the negative regulation of FlgM export. FlgM is released through the basal body structure lacking the hook and the filament only when the flhB and rflH genes are both defective. Therefore, the export gate for FlgM should be double locked by FlhB and RflH. The rflH gene is located at around 52 min, where no flagellum-related gene has been found. I propose a revised model of the export-switching machinery which consists of two systems, the hook-length signal transduction pathway and the double-locked gate for FlgM export.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号