首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymorphic cytochrome P4502E1 (CYP2E1) plays an important role in the metabolic activation of many carcinogens. We have previously shown that the c1/c1 genotype recognized byRsa I in the 5′-regulatory region of theCYP2E1 may be a susceptibility factor for developing esophageal cancer and lung cancer in Chinese. The present study was to investigate the relationship between theRsa I genotype and the expression of CYP2E1 in human livers. A total of 50 liver specimens were genotyped forCYP2E1 and assayed for CYP2E1 protein contents and functional activity by using specific antibody in immunoblot and a probe substrate,p-nitrophenol. A considerable interindividual variation in CYP2E1 protein (20-fold) and functional activity (56-fold) was observed among these liver samples. However, when they were categorized according to genotype, the mean content of CYP2E1 protein was significantly higher among individuals with the c1/c1 genotype than that among those having c1/c2 or c2/c2 genotype [124.0±83.9 pmol/mg (n = 28) versus 65.5 ±38.9 pmol/mg (n = 22),P<0.01]. The mean activity of CYP2E1 towardsp-nitrophenol for the c1/c1 genotype was also higher than that for the variant genotypes (198.4±27.8 pmol/min/mg versus 101.2 ±18.1 pmol-1 · min-1 · mg-1,P<0.01). Also, the protein levels and functional activity showed a significant correlation (r = 0.68,P<0.01). These results demonstrate an association between theRsa I genotype and the phenotype of CYP2E1 in our samples, and the data are compatible with the assumption thatCYP2E1 c1/c1 genotype is a susceptibility factor for certain cancers in Chinese.  相似文献   

2.
CYP1A2 and CYP2E1 are two of the main cytochrome P450 isoforms involved in the metabolism of commonly used drugs and xenobiotic compounds considered to be responsible for or possible participants in the development of several human diseases. Individual susceptibility to developing these pathologies relies, among other factors, on genetic polymorphism which depends on ethnic differences, as the frequency of mutant genotypes varies in different human populations. Thus the aim of this study was to investigate the frequency of CYP1A2 5'-flanking region and CYP2E1 Rsa I/Pst I polymorphisms in Mexicans by PCR-RFLP methods. The DNA of 159 subjects was analysed and mutant allele frequencies of 30% for CYP2E1 Rsa I/Pst I sites and 43% for CYP1A2 5'-flanking region were found. These frequencies are higher than those previously reported for other human populations.  相似文献   

3.
Genetic polymorphism of cytochrome P450 2E1 in the Turkish population.   总被引:2,自引:0,他引:2  
CYP 2E1 is involved in metabolic activation of carcinogenic N-nitrosamines, benzene, urethane and other low molecular weight compounds. CYP2E1 gene is present in the population in various polymorphic forms. We detected the RFLP of the human CYP2E1 gene with the restriction endonuclease PstI, RsaI and DraI in a group of 153 Turkish individuals. According to the results of the PstI/RsaI analysis, 96.07% of the subjects were of the c1/c1 genotype, and 3.93% were of the c1/c2 genotype. In the DraI RFLP analysis, 84.30% DD genotype, 15.03% CD genotype and 0.66% CC genotype were determined. The data obtained may be useful in epidemiological studies of the influence of CYP2E1 polymorphism on carcinogenesis.  相似文献   

4.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

5.
Enhanced hepatic levels of cytochrome P450 2E1 (CYP2E1) may play a key role in the pathogenesis of some liver diseases because CYP2E1 represents a significant source of reactive oxygen species. Although a large fraction of CYP2E1 is located in the endoplasmic reticulum, CYP2E1 is also present in mitochondria. In this study, we asked whether ethanol, a known inducer of microsomal CYP2E1, could also increase CYP2E1 within mitochondria. Our findings indicated that ethanol increased microsomal and mitochondrial CYP2E1 in cultured rat hepatocytes and in the liver of lean mice. This was associated with decreased levels of glutathione, possibly reflecting increased oxidative stress. In contrast, in leptin-deficient obese mice, ethanol administration did not increase mitochondrial CYP2E1, nor it depleted mitochondrial glutathione, suggesting that leptin deficiency hampers mitochondrial targeting of CYP2E1. Thus, ethanol intoxication increases CYP2E1 not only in the endoplasmic reticulum but also in mitochondria, thus favouring oxidative stress in these compartments.  相似文献   

6.
In order to explore the role of cytochrome P-450 (CYP) 2E1 in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effects of Sch B treatment on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression were compared between wild-type and cyp2e1 knock-out C57B/6N mice. Cyp2e1 knock-out mice exhibited a significantly smaller degree of Sch B-induced enhancement in hepatic mtGAS when compared with the wild-type counterpart. But Hsp25/70 expression induced by Sch B was not affected. Sch B-induced enhancement of mtGAS was corroborated by the increase in hepatic mitochondrial antioxidant capacity, as assessed by in vitro measurement of oxidant production, with the enhancing effect being slightly reduced in the knock-out mice. Using liver microsomes prepared from wild-type and knock-out mice as a source of CYP, Sch B was found to be a good co-substrate for the CYP-catalyzed reaction, with the rate of NADPH oxidation observable in microsomes prepared from knock-out mice being slower. The CYP-catalyzed reaction with Sch B was associated with a concomitant production of oxidant species, with the extent of oxidant production being reduced in cyp2e1 knock-out mouse microsomes. Taken together, the results indicate that CYP2E1 is partly responsible for the hepatic metabolism of Sch B that may trigger the antioxidant response in vivo.  相似文献   

7.
8.
It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 μg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 ± 0.034 nmol/106 cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N′-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 μg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.  相似文献   

9.
The present investigation was carried out to study the expression of major cytochrome P450 (CYP) isozymes in streptozotocin-induced diabetes with concomitant insulin therapy. Male Sprague-Dawley rats were randomly assigned to untreated control, streptozotocin-induced diabetic, insulin-treated groups and monitored for 4 weeks. Uncontrolled hyperglycemia in the early phase of diabetes resulted in differential regulation of cytochrome P450 isozymes. CYP1B1, CYP1A2, heme oxygenase (HO)-2 proteins and CYP1A2-dependent 7-ethoxyresorufin O-deethylase (EROD) activity were upregulated in the hepatic microsomes of diabetic rats. Insulin therapy ameliorated EROD activity and the expression of CYP1A2, CYP1B1 and HO-2 proteins. In addition, CYP2B1 and 2E1 proteins were markedly induced in the diabetic group. Insulin therapy resulted in complete amelioration of CYP2E1 whereas CYP2B1 protein was partially ameliorated. By contrast, CYP2C11 protein was decreased over 99% in the diabetic group and was partially ameliorated by insulin therapy. These results demonstrate widespread alterations in the expression of CYP isozymes in diabetic rats that are ameliorated by insulin therapy.  相似文献   

10.
The expression of the cytochrome P450s (CYPs) may vary in the different brain cells depending on their specialization and the presence of different endogenous factors. The present study was initiated to investigate the expression and catalytic activity of the constitutive and inducible forms of CYP2E1, the major ethanol inducible CYP, in cultured rat brain neuronal and glial cells. These cells exhibited relatively two-fold higher activity of N-nitrosodimethylamine demethylase (NDMA-d) when compared with the liver enzyme. Pretreatment with ethanol revealed a significant time and concentration dependent induction in NDMA-d activity in both cell types. Western blot, immunocytochemistry and RT-PCR also indicated significant induction of CYP2E1 in the cultured brain cells. Interestingly, the neuronal cells exhibited greater magnitude of induction than the glial cells. The relatively higher degree of induction in cultures of neurons has indicated enhanced sensitivity of neurons to the inductive effects of ethanol. This enhanced induction of CYP2E1 in neuronal cells has indicated that like regional specificity, cell specificity also exists in the induction of CYP2E1 and other CYPs.  相似文献   

11.
Expression of functional mammalian P450 2E1 in hairy root cultures.   总被引:1,自引:0,他引:1  
P450 2E1 is an important mammalian liver enzyme known to metabolize a wide range of compounds including several common environmental pollutants. The medicinal plant, Atropa belladonna, was transformed with Agrobacterium rhizogenes containing a binary vector with rabbit P450 2E1 in either the sense or antisense orientation. The resulting "hairy roots" were isolated and grown in liquid medium. Production of P450 2E1 protein was verified in the roots containing the 2E1 gene in the sense orientation. Transgenic and control root cultures were dosed with the environmental pollutant, trichloroethylene (TCE), and were analyzed for the TCE metabolites, chloral and trichloroethanol. The root cultures expressing the mammalian P450 2E1 had increased levels of the metabolites compared to the levels in the control roots. This method represents a quick way to screen transformants for expression of foreign genes before regeneration of whole plants, and also as a possible source of foreign protein for purification.  相似文献   

12.
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration.  相似文献   

13.
Summary By transfection of an expression vector of human cytochrome P450 2E1 (CYP2E1) into a human hepatoma cell line (HLE), a new cell line (HLE/2E1) that stably expresses activity of CYP2E1 has been established. The HLE/2E1 cell line expressed a higher level of CYP2E1 messenger ribonucleic acid than did the mother HLE cell line. CYP2E1 enzyme activity determined by ap-nitrophenol oxidation assay was also higher in HLE/2E1 cells than in HLE cells. In addition, the enzyme activity of the HLE/2E1 cells was increased by ethanol treatment. Exposure to acetaminophen (APAP) or buthionine sulfoximine (BSO) caused a greater decrease in viability of the HLE/2E1 cells than that of the HLE cells, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The cytotoxicity of APAP or BSO to HLE/2E1 cells was inhibited by the addition of ethanol or vitamin E. However, the cytotoxicity of both APAP and BSO was enhanced by 24-h preincubation of HLE/2E1 cells with ethanol. These results show that this cell line provides a useful model for studying catalytic properties of CYP2E1 and cytotoxic mechanisms of chemicals metabolized by CYP2E1.  相似文献   

14.
15.
Endogenous nitrosation due to chronic inflammation is enhanced in opisthorchiasis and plays a crucial role in the development of cholangiocarcinoma (CCA). Hepatic cytochrome P450 (CYP) family enzymes, especially CYP2A6 and CYP2E1, are involved in the metabolism of procarcinogens; these two enzymes metabolize endogenous nitrosamines to carcinogenic N-dimethylnitrosamine (NDMA). CYP2A6 activity is increased in patients infected with Opisthorchis viverrini. Our aim was to determine whether the expression and function of CYP2A6 and 2E1 in the livers of patients with O. viverrini-associated cholangiocarcinoma (CCA) was altered compared to livers without CCA. Livers of CCA patients (n = 13 cases) showed increased enzyme activities, protein and mRNA levels of CYP2A6 whereas the enzyme activity and protein levels of CYP2E1 were markedly decreased (P < 0.05). CYP2E1 mRNA levels were not altered. Large numbers of inflammatory cells and increased iNOS expression was found in areas adjacent to the tumor. The data provide evidence to support the concept that enhanced CYP2A6 activity and diminished CYP2E1 activity probably involve to the progression of CCA.  相似文献   

16.
目的:探讨云南彝族人群中的酒精依赖患者和云南彝族人群中健康人在CYP2E1基因的一个SNP(Rs3813867)的等位基因和基因型频率的不同,试图找出酒依赖的危险基因,比较它与其他人群之间在CYP2E1PstI位(rs3813867)基因多态性的不同。方法:对110个酒精依赖者和330名健康的志愿者不喝酒(对照组)的CYP2E1PstI位的多态性,等位基因频率和基因型频率进行测定。采用PCR—RFLP方法进行基因分型。结果:CYP2 E1 Psfl位的多态性,等位基因频率和基因型频率是相似的在酒精依赖者和对照组(72.7%vs72.1%,C1/C1),(25.5%vs25.8%,C1/C2),(1.8%vs2.1%为C1/C2)和(85.5%vs85%c1的),(14.5%VSl5%为c2)。结论:CYP2E1的基因型和等位基因分布在酒精依赖组和对照组之间没有显着性差异(P〉0.05),在这两个民族在AD组和对照组基因型分布有差异(P〈0.001)。  相似文献   

17.
Zhao M  Li LP  Sun DL  Sun SY  Huang SD  Zeng S  Jiang HD 《Chirality》2012,24(5):368-373
Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.  相似文献   

18.
The regulation of CYP2E1 and 2B1 was studied by following mRNA levels, catalytic activities and the subcellular distribution of the apoproteins in rat liver 0, 6, 12, 24, 48 and 96 h after a single intragastric dose of acetone. No changes were observed in hepatic CYP2E1 mRNA levels at any time after acetone treatment, whereas rapid rises were observed in the microsomal amount of CYP2E1 protein and CYP2E1-catalyzed 4-nitrophenol hydroxylase and carbon-tetrachloride-initiated lipid-peroxidation activities. However, CYP2E1-dependent catalytic activities declined much faster than the immunodetectable CYP2E1 protein, suggesting that this cytochrome P-450 is inactivated prior to degradation. Similar results were seen in primary hepatocyte cultures. By contrast, concomitant changes in levels of CYP2B1 and CYP2B1-dependent O-depentylation of pentoxyresorufin were observed in the same microsomal preparations. Investigation of the degradative mechanism of both CYP2E1 and CYP2B1 by immunoquantitation of the proteins in lysosomes and by immunohistochemistry indicated their degradation via an autophagic-lysosomal pathway. The data suggest that CYP2E1 is acutely inactivated in the endoplasmic reticulum and that degradation of this isozyme occurs, at least in part, by the lysosomal route. By contrast, CYP2B1 is principally controlled at the level of synthesis.  相似文献   

19.
Raising intact male pigs would have a significant economic impact on the pork industry. However, the presence of skatole (a major cause of boar taint) in meat from intact male pigs could be highly objectionable to consumer. The excessive accumulation of skatole in fat is a major cause of boar taint, and is associated with defective expression of cytochrome P4502E1 (CYP2E1). In pigs, it has been found that CYP2E1 is negatively correlated with accumulation of skatole. The searching for polymorphism of CYP2E1 and the relevant functional analysis would help develop a genetic marker for the selection of pigs with low skatole levels in fat. The aim of this study was to measure the expression pattern of CYP2E1 mRNA in various tissues of the pig, to identify genetic polymorphisms, and to evaluate the functional relevance of polymorphic sites with respect to the skatole level in fat. We show herein that a substitution of G → A at base 1423 of the CYP2E1 gene in the liver causes a significant decrease in the expressed CYP2E1 level. Our data suggest that the G → A substitute might be at least partially responsible for a high level of skatole in pigs. We believe that this is an important step toward the selection of genetic markers for boar taint by lowering fat levels of skatole in fat.  相似文献   

20.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号