首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-directed mutagenesis was used to examine the catalytic importance of 2 histidine and 4 arginine residues in Escherichia coli periplasmic acid phosphatase (EcAP). The residues that were selected as targets for mutagenesis were those that were also conserved in a number of high molecular weight acid phosphatases from eukaryotic organisms, including human prostatic and lysosomal acid phosphatases. Both wild type EcAP and mutant proteins were overproduced in E. coli using an expression system based on the T7 RNA polymerase promoter, and the proteins were purified to homogeneity. Examination of the purified mutant proteins by circular dichroism and proton NMR spectroscopy revealed no significant conformational changes. The replacement of Arg16 and His17 residues that were localized in a conserved N-terminal RHGXRXP motif resulted in the complete elimination of EcAP enzymatic activity. Critical roles for Arg20, Arg92, and His303 were also established because the corresponding mutant proteins exhibited residual activities that were not higher than 0.4% of that of wild type enzyme. In contrast, the replacement of Arg63 did not cause a significant alteration of the kinetic parameters. The results are in agreement with a previously postulated distant relationship between acid phosphatases, phosphoglycerate mutases, and fructose-2,6-bisphosphatase. These and earlier results are also consistent with the conclusion that 2 histidine residues participate in the catalytic mechanism of acid phosphatases, with His17 playing the role of a nucleophilic acceptor of the phospho group, whereas His303 may act as a proton donor to the alcohol or phenol.  相似文献   

2.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

3.
Site-directed mutagenesis was used to examine the roles of the conserved histidine, arginine and cysteine residues in acid phosphatase from Prevotella intermedia (PiACP). The replacement of histidine and arginine residues resulted in the elimination of the PiACP activity while the cysteine mutants retained activity. These results suggest that the histidine and arginine residues are essential for catalysis.  相似文献   

4.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

5.
[背景]角蛋白酶KerZ1能在60℃的最适温度下高效降解角蛋白底物,然而其在低于最适温度条件下的酶活极低,难以适应工业生产和实际应用的要求.[目的]提升角蛋白酶KerZ1的低温催化活性.[方法]结合同源比对与折叠自由能分析向角蛋白酶KerZ1引入氨基酸突变,并对突变体的酶学性质进行研究.[结果]对KerZ1柔性环区域(...  相似文献   

6.
7.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151alphaF and Q50betaN, showed two- to threefold-increased catalytic efficiency (k(cat)/K(m)) compared to wild-type CA130. Their K(m) values were decreased by ca. 50%, and the k(cat) values increased to 14.4 and 16.9 s(-1), respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121betaA and K198betaA had a 30 to 58% longer half-life than wild-type CA130, and K198betaA and D286betaA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50betaN/K198betaA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

8.
精氨酸脱亚胺酶(ADI)是一种针对精氨酸缺陷型癌症(如:肝癌、黑素瘤)的新药,目前处于临床三期试验。文中通过定点突变技术分析了精氨酸脱亚胺酶的特定氨基酸位点对酶活力的影响机制。针对已报道的关键氨基酸残基A128、H404、I410,采用QuikChange法进行定点突变,获得ADI突变株M1(A128T)、M2(H404R)、M3(I410L)和M4(A128T/H404R)。将突变株在大肠杆菌BL21(DE3)中进行重组表达,并对纯化获得的突变蛋白进行酶学性质研究。结果表明,突变位点A128T和H404R对ADI最适pH的提高,生理中性(pH 7.4)条件下的酶活力和稳定性的提高,以及Km值的降低均具有显著的作用。研究结果为阐明ADI的酶活力影响机制和蛋白质的理性改造提供了一定的依据。  相似文献   

9.
Chen  Yu  Luo  Quan  Zhou  Wen  Xie  Zeng  Cai  Yu-Jie  Liao  Xiang-Ru  Guan  Zheng-Bing 《Applied microbiology and biotechnology》2017,101(5):1935-1944

Bacterial laccases are potential enzymes for biotechnological applications because of their remarkable advantages, such as broad substrate spectrum, various reactions, high thermostability, wide pH range, and resistance to strongly alkaline environments. However, the use of bacterial laccases for industrialized applications is limited because of their low expression level and catalytic efficiency. In this study, CotA, a bacterial laccase from Bacillus pumilus, was engineered through presumptive reasoning and rational design approaches to overcome low catalytic efficiency and thermostability. L386W/G417L, a CotA double-mutant, was constructed through site-directed mutagenesis. The catalytic efficiency of L386W/G417L was 4.3 fold higher than that of wild-type CotA-laccase, but the thermostability of the former was decreased than that of the latter and other mutants. The half-life (t 1/2) of wild-type and G417L were 1.14 and 1.47 h, but the half-life of L386W/G417L was only 0.37 h when incubating the enzyme at 80 °C. Considering the high catalytic efficiency of L386W/G417L, we constructed L386W/G417L/G57F, another mutant, to improve thermostability. Results showed that the half-life of L386W/G417L/G57F was 0.54 h when incubating the enzyme at 90 °C for 2 h with about 34% residual activity, but the residual activity of L386W/G417L was less than 40% when incubating the enzyme at 90 °C for 5 min. L386W/G417L was more efficient in decolorizing various industrial dyes at pH 10 than other mutants. L386W/G417L/G57F also exhibited an efficient decolorization ability. L386W/G417L/G57F is appropriate for biotechnological applications because of its high activity and thermostability in decolorizing industrial dyes. CotA-laccase may be further subjected to molecular modification and be used as an enhancer to improve decolorization efficiency for the physical and chemical treatment of dye wastewater.

  相似文献   

10.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

11.
路遥  蒋立科  陈美玲  还连栋  钟瑾 《微生物学报》2010,50(11):1481-1487
【目的】通过定点突变技术改变乳链菌肽(nisin)特定位置氨基酸,获得性质改善的nisin突变体,为扩大其应用范围提供依据。【方法】在抑菌谱扩大的nisin单突变体M21K nisinZ的基础上,对M21K nisZ基因第29位丝氨酸密码子进行定点突变;将其克隆至乳酸菌表达载体pMG36e,并在Lactococcus lactis NZ9800中进行表达;双突变体M21K/S29K nisinZ经分离纯化后检测其在抑菌活性、抑菌谱和稳定性等方面的变化。【结果】与单突变体M21K nisinZ及野生型nisinZ(wild-type,WT)相比,双突变体M21K/S29K nisinZ对指示菌的抑菌活性虽有所下降,但其对温度及pH值的稳定性有显著提高。同时其抑菌谱与M21K nisinZ相同,可抑制革兰氏阴性菌,扩大了WT的抑菌谱。【结论】通过改变nisin分子特定位置的氨基酸可以改善nisin分子的理化性质,有可能得到应用范围更广的nisin品种。  相似文献   

12.
The structure of Escherichia blattae non-specific acid phosphatase (EB-NSAP) has been determined at 1.9 A resolution with a bound sulfate marking the phosphate-binding site. The enzyme is a 150 kDa homohexamer. EB-NSAP shares a conserved sequence motif not only with several lipid phosphatases and the mammalian glucose-6-phosphatases, but also with the vanadium-containing chloroperoxidase (CPO) of Curvularia inaequalis. Comparison of the crystal structures of EB-NSAP and CPO reveals striking similarity in the active site structures. In addition, the topology of the EB-NSAP core shows considerable similarity to the fold of the active site containing part of the monomeric 67 kDa CPO, despite the lack of further sequence identity. These two enzymes are apparently related by divergent evolution. We have also determined the crystal structure of EB-NSAP complexed with the transition-state analog molybdate. Structural comparison of the native enzyme and the enzyme-molybdate complex reveals that the side-chain of His150, a putative catalytic residue, moves toward the molybdate so that it forms a hydrogen bond with the metal oxyanion when the molybdenum forms a covalent bond with NE2 of His189.  相似文献   

13.
We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.  相似文献   

14.
Hillar A  Peters B  Pauls R  Loboda A  Zhang H  Mauk AG  Loewen PC 《Biochemistry》2000,39(19):5868-5875
Catalase-peroxidases have a predominant catalatic activity but differ from monofunctional catalases in exhibiting a substantial peroxidatic reaction which has been implicated in the activation of the antitubercular drug isoniazid in Mycobacterium tuberculosis. Hydroperoxidase I of Escherichia coli encoded by katG is a catalase-peroxidase, and residues in its putative active site have been the target of a site directed-mutagenesis study. Variants of residues R102 and H106, on the distal side of the heme, and H267, the proximal side ligand, were constructed, all of which substantially reduced the catalatic activity and, to a lesser extent, the peroxidatic activity. In addition, the heme content of the variants was reduced relative to the wild-type enzyme. The relative ease of heme loss from HPI and a mixture of tetrameric enzymes with 2, 3, and 4 hemes was revealed by mass spectrometry analysis. Conversion of W105 to either an aromatic (F) or aliphatic (I) residue caused a 4-5-fold increase in peroxidatic activity, coupled with a >99% inhibition of catalatic activity. The peroxidatic-to-catalatic ratio of the W105F variant was increased 2800-fold such that compound I could be identified by both electronic and EPR spectroscopy as being similar to the porphyrin cation radical formed in other catalases and peroxidases. Compound I, when generated by a single addition of H(2)O(2), decayed back to the native or resting state within 1 min. When H(2)O(2) was generated enzymatically in situ at low levels, active compound I was evident for up to 2 h. However, such prolonged treatment resulted in conversion of compound I to a reversibly inactivated and, eventually, to an irreversibly inactivated species, both of which were spectrally similar to compound I.  相似文献   

15.
贾云耀  方芳 《生物工程学报》2020,36(8):1640-1649
氨基甲酸乙酯(Ethylcarbamate,EC)是一种存在于发酵食品和酒精饮料中的可致癌物,过量摄入可能会影响人体健康。酶法降解是减少发酵食品中氨基甲酸乙酯及其前体尿素含量的有效方法之一。脲酶具有氨基甲酸乙酯水解酶和尿素酶两种活性,因此在减少发酵食品中氨基甲酸乙酯及其前体尿素方面具有良好的应用前景。目前脲酶降解发酵酒精饮料中氨基甲酸乙酯面临的主要问题是脲酶对氨基甲酸乙酯的催化活性及亲和力较低,因而其降解效果不理想。文中成功在大肠杆菌Escherichia coli中表达了来源于解淀粉芽孢杆菌Bacillus amyloliquefaciens JP-21的脲酶,表达水平为尿素酶3 291.74 U/L,氨基甲酸乙酯水解酶227.26 U/L。通过模拟脲酶中催化亚基UreC与氨基甲酸乙酯对接的结构,确定了M326和M374这两个影响酶与底物结合的位点。采用点饱和突变获得了3株氨基甲酸乙酯水解酶活性提高的突变体M374A、M374T和M326V,以EC为底物时的Km分别为101.84mmol/L、129.49 mmol/L和121.67 mmol/L,比野生型分别降低了37.47%–50...  相似文献   

16.
The catalytic functions of the amino-terminal and carboxyl-terminal halves of the large subunit of carbamoyl phosphate synthetase from Escherichia coli have been identified using site-directed mutagenesis. Glycine residues at positions 176, 180, and 722 within the putative mononucleotide-binding site were replaced with isoleucine residues. Each of these mutations resulted in at least a 1 order of magnitude reduction in the Vmax for carbamoyl phosphate synthesis. The mutations on the amino-terminal half, G176I and G180I, caused slight reduction in the rate of synthesis of ATP from ADP and carbamoyl phosphate (the partial ATP synthesis reaction) but the bicarbonate-dependent ATPase reaction velocity was reduced to less than 10% of the wild-type rate. The mutant G722I, which is on the carboxy-terminal half, caused the partial ATP synthesis reaction to be reduced by 1 order of magnitude but the bicarbonate-dependent ATPase reaction was reduced only slightly. All three mutations are within regions which show homology to the putative glycine-rich loops of many ATP-binding proteins. These results have been interpreted to suggest that the two homologous halves of the large subunit of carbamoyl phosphate synthetase each contain a binding site for ATP. The NH2-terminal domain contains the portion of the large subunit that is primarily involved with the phosphorylation of bicarbonate to carboxy phosphate while the COOH-terminal domain contains the region of the enzyme that catalyzes the phosphorylation of carbamate to carbamoyl phosphate.  相似文献   

17.
Benzoylformate decarboxylase (BFD) from Pseudomonas putida was subjected to directed molecular evolution to generate mutants with increased carboligase activity which is a side reaction of the enzyme. After a single round of random mutagenesis mutants were isolated which exhibited a 5-fold increased carboligase activity in aqueous buffer compared to the wild-type enzyme with a high enantiomeric excess of the product (S)-2-hydroxy-1-phenyl-propanone. From the same library, mutants with enhanced carboligase activity in water-miscible organic solvents have been isolated. The selected mutants have been characterized by sequencing, revealing that all mutants carry a mutation at Leu476, which is close to the active site but does not directly interact with the active center. BFD-L476Q has a 5-fold higher carboligase activity than the wild-type enzyme. L476 was subjected to saturation mutagenesis yielding eight different mutants with up to 5-fold increased carboligase activity. Surprisingly, all L476 mutants catalyze the formation of 2-hydroxy-1-phenyl-propanone with significantly higher enantioselectivity than the wild-type enzyme although enantioselectivity was not a selection parameter. Leu476 potentially plays the role of a gatekeeper of the active site of BFD, possibly by controlling the release of the product. The biocatalyst could be significantly improved for its side reaction, the C-C bond formation and for application under conditions that are not optimized in nature.  相似文献   

18.
本研究旨在利用理性设计的方法来提高来源于土曲霉Aspergillus terreus的酸性脂肪酶ATL的催化活力。通过同源比对,选择脂肪酶盖子区域和底物结合口袋域中的位点进行定点突变,得到8种ATL的突变脂肪酶。结果发现,盖子区域突变酶ATLLid与底物结合口袋域突变酶ATLV218W的催化活性显著提高。ATLLid和ATLV218W对底物对硝基苯酚月桂酸酯p-nitrophenyl laurate(p-NPL)的催化活性最高,k_(cat)值较ATL分别提高了39.37倍和50.79倍,k_(cat)/K_m值较ATL分别提高了2.85倍和8.48倍。与ATL相比,ATLLid和ATLV218W的热稳定性略有下降,最适p H为5.0,p H 4.0–8.0具有较好的稳定性,说明突变未对ATL的嗜酸耐酸特性产生影响。通过同源建模模拟及分子对接技术分析底物p-NPL与酶分子间的相互作用,解析了ATLLid和ATLV218W催化活性提高的机理。  相似文献   

19.
A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65 degrees C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca(2+)-independent mechanism.  相似文献   

20.
Five moeA mutants were generated by replacing some conserved amino acids of MoeA by site-directed mutagenesis. The mutants were assayed for the ability to restore in vivo nitrate reductase activity of the moeA mutant Escherichia coli JRG97 and in vitro Neurospora crassa nit-1 nitrate reductase activity. The replacements Asp59AlaGly60Ala, Asp259Ala, Pro298AlaPro301Ala abolished the function of MoeA in Mo-molybdopterin formation and stabilization, reflected in the inability to restore nitrate reductase activity. The replacements Gly251AlaGly252Ala reduced, and that of Pro283Ala had no effect, on nitrate reductase activity. E. coli JRG97 cells transformed with mutants that failed to restore nitrate reductase activity showed by HPLC analysis a decreased level of molybdopterin-derived dephospho FormA as compared to bacteria transformed with wild-type moeA. The effects of the amino acid replacements on MoeA function may be explained in correlation with the MoeA crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号