首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phosphocreatine (PCr) depletion duringisometric twitch stimulation at 5 Hz was measured by31P-NMR spectroscopy in gastrocnemius muscles ofpentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs.wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation,estimated from the difference between spectra gated to times 200 ms and140 s after 2-s bursts of contractions, was 2.2 ± 0.6% ofinitial PCr in MMKO muscle vs. 9.7 ± 1.6% in WT muscles(mean ± SE, n = 7, P < 0.001).Initial PCr/ATP ratio and intracellular pH were not significantlydifferent between groups, and there was no detectable change inintracellular pH or ATP in either group after 2 s. The initialdifference in net PCr depletion was maintained during the first minuteof continuous 5-Hz stimulation. However, there was no significantdifference in the quasi-steady-state PCr level approached after 80 s (MMKO 36.1 ± 3.5 vs. WT 35.5 ± 4.4% of initial PCr;n = 5-6). A kinetic model of ATPase, creatinekinase, and adenylate kinase fluxes during stimulation was consistentwith the observed PCr depletion in MMKO muscle after 2 s only ifADP-stimulated oxidative phosphorylation was included in the model.Taken together, the results suggest that cytoplasmic ADP more rapidlyincreases and oxidative phosphorylation is more rapidly activated atthe onset of contractions in MMKO compared with WT muscles.

  相似文献   

3.
Certain phosphocreatine preparations contain a contaminant that inhibits phosphofructokinase and pyruvate kinase assays. The contaminant can be separated from phosphocreatine by anion exchange chromatography. After appropriate purification, phosphocreatine has no effect on phosphofructokinase or pyruvate kinase; thus, there is no evidence that it serves muscle as a regulator of these enzymes. Although the inhibitory preparations of phosphocreatine contain inorganic phosphate and trace amounts of more negatively charged phosphorylated contaminants, the inhibitor is not inorganic phosphate or pyrophosphate. The nature of the inhibitor remains to be determined.  相似文献   

4.
5.
Arginine and creatine kinase activities in different muscles are compared with calculated maximum rates of ATP turnover. The magnitude of the kinase activities decreases in the following order: anaerobic muscles and vertebrate skeletal muscles greater than heart muscle greater than insect flight muscle. The maximum activity of phosphagen kinases (i.e. creatine kinase and arginine kinase), in the direction of phosphagen formation, is lower than the calculated maximum rate of ATP turnover in insect flight muscle or rat heart.  相似文献   

6.
Thermal denaturation of creatine kinase from rabbit skeletal muscle has been studied by differential scanning calorimetry. The excess heat capacity vs. temperature profiles were independent of protein concentration, but strongly temperature scanning rate-dependent. It has been shown that thermal denaturation of creatine kinase satisfies the previously proposed validity criteria for the two-state irreversible model [Kurganov et al., Biophys. Chem.70 (1997) 125]. The energy activation value has been calculated to be 461.0 +/- 0.7 kJ/mol.  相似文献   

7.
8.
9.
P R Sears  P F Dillon 《Biochemistry》1999,38(45):14881-14886
The interaction of pyruvate kinase from skeletal (SKPK) and smooth (SMPK) muscle with MM-creatine kinase (MMCK) and BB-creatine kinase (BBCK) was assessed using temporal absorbance changes, variations in absorbance at different wavelengths, concentration dependence, association in an electric field, and PK kinetic activity. SKPK exhibits a time course of absorbance increase in the presence of MMCK with a time constant of 29.5 min. This increase occurs at all wavelength from 240 to 1000 nm. At 195 nm, the combination of SKPK and MMCK produces a decrease in absorption with electric fields of both 0 and 204 V/cm. The change in SKPK-MMCK is saturable. SKPK activity is significantly increased by the presence of MMCK in solutions of 0-32% ethanol. These results indicate specific SKPK-MMCK interaction. SMPK and BBCK did not exhibit similar coupling when the BBCK concentration dependence of absorbance or SMPK activity in solutions of 0-32% ethanol was determined. Both MMCK and BBCK increased SKPK activity; neither MMCK nor BBCK increased SMPK activity. The ability to form diazymatic complexes with creatine kinase appears to reside in SKPK. This coupling may account for the increased flux through PK without significant substrate changes seen during skeletal muscle activation. This coupling will not occur in smooth muscle.  相似文献   

10.
Creatine kinase from rhesus monkey skeletal muscle is activated by acetate and other short chain fatty acids. Activation is associated with lower Km and higher Vmax values at less than saturating substrate concentrations but does not occur when both substrates are saturating. No co-operativity between subunits is evident in the activation process. It appears that acetate promotes the mutual enhancement by substrates in their binding by inducing the optimum enzyme conformation normally associated with substrate saturation. Conservation of this activation effect through the evolution of the phosphagen kinases implies that it may well be of physiological significance.  相似文献   

11.
Rabbit muscle creatine kinase (CK) was modified by 5,5'-dithio-bis(2-nitrobenzoic acid) accompanied by 3 M guanidine hydrochloride denaturation to produce a partially folded state with modified thiol groups. The partially folded CK was in a monomeric state detected by size exclusion chromatography, native-polyacrylamide gel electrophoresis, circular dichroism, and intrinsic fluorescence studies. After dithiothreitol (DTT) treatment, about 70% CK activity was regained with a two-phase kinetic course. Rate constants calculated for regaining of activity and refolding were compared with those for CK modified with various treatments to show that refolding and recovery of activity were synchronized. To further characterize the partially folded CK state and its folding pathway, the molecular chaperone GroEL was used to evaluate whether it can bind with partly folded CK during refolding, and 1-anilinonaphthalene-8-sulfonate was used to detect the hydrophobic surface of the monomeric state of CK. The monomeric state of CK did not bind with GroEL, although it had a larger area of hydrophobic surface relative to the native state. These results may provide different evidence for the structural requirement of GroEL recognition to the substrate protein compared with previously reported results that GroEL bound with substrate proteins mainly through hydrophobic surface. The present study provides data for a monomeric intermediate trapped by the modification of the SH groups during the refolding of CK. Schemes are given for explaining both the partial folding CK pathway and the refolding pathway.  相似文献   

12.
13.
Despite the energetic flux being much lower in smooth muscle compared to striated muscles (such as the heart and skeletal muscle) creatine kinase (CK) has been found present and active in all smooth muscles studied to date. A complete CK circuit has been identified, with CK found in the mitochondria, contractile elements, membrane pumps and the cytoplasm. CK isoenzymes are coupled to many cellular energetic processes and appears to be involved in energy production and consumption by acting as an energy transducer. The CK system responds to pathological insults and development (e.g. hypertrophy and gestation respectively) by changes in sub-cellular distribution localization, isoenzymes, and specific activity. The conclusion from these observations is that creatine kinase is intimately involved in the energetic system of smooth muscle.Abbreviations CK creatine kinase - Mi-CK mitochondrial creatine kinase - Cr creatine - PCr phosphocreatiner - NMR nuclear magnetic resonance - SHR spontaneously hypertensive rat - -GPA -guanidinopropionic acid  相似文献   

14.
The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate was studied. It was found that up to five of the sixteen histidine groups per enzyme subunit could be modified, and under the conditions employed, there was no evidence for formation of the disubstituted derivative of histidine. Evidence was obtained for small but significant amounts of modification of lysine and cysteine groups; tyrosine groups were not modified. Modification of the enzyme led to inactivation; this could be protected against by inclusion of substrates or, more effectively, by inclusion of the combination MgADP plus creatine plus nitrate, which is thought to produce a 'transition-stage-analogue' complex. Analysis of data on the rates of inactivation and the stoicheiometry of modification suggested that there was one essential histidine group per enzyme subunit, modification of which led to inactivation.  相似文献   

15.
The effect of limited proteolysis on rabbit muscle creatine kinase.   总被引:4,自引:3,他引:1       下载免费PDF全文
We report a novel assay method for enterokinase capable of detecting approx. 1 fmol of enzyme. The method depends on quantification of the release of specifically radiolabelled activation peptides from bovine trypsinogen and is unaffected by trypsin inhibitors. The assay is applicable to biological fluids such as serum. The substrate was produced by selective epsilon-amidination of bovine trypsinogen followed by acetylation with [3H]acetic anhydride and deprotection. The assay has been used to study the effects of pH, Ca2+, ionic strength abd glycodeoxycholate on enterokinase activity.  相似文献   

16.
The creatine kinases (CK) regenerate ATP for cellular reactions with a high energy expenditure. While muscle CK (CKM) is expressed almost exclusively in adult skeletal and cardiac muscle, brain CK (CKB) expression is more widespread and is highest in brain glial cells. CKB expression is also high in human lung tumor cells, many of which contain mutations in p53 alleles. We have recently detected high levels of CKB mRNA in HeLa cells and, in this study, have tested whether this may be due to the extremely low amounts of p53 protein present in HeLa cells. Transient transfection experiments showed that wild-type mouse p53 severely repressed the rat CKB promoter in HeLa but not CV-1 monkey kidney cells, suggesting that, in HeLa but not CV-1 cells, p53 either associates with a required corepressor or undergoes a posttranslational modification necessary for CKB repression. Conversely, mouse wild-type p53 strongly activated the rat CKM promoter in CV-1 cells but not in HeLa cells, suggesting that, in CV-1 cells, p53 may associate with a required coactivator or is modified in a manner necessary for CKM activation. The DNA sequences required for p53-mediated modulations were found to be within bp -195 to +5 of the CKB promoter and within bp -168 to -97 of the CKM promoter. Moreover, a 112-bp fragment from the proximal rat CKM promoter (bp -168 to -57), which contained five degenerate p53-binding elements, was capable of conferring p53-mediated activation on a heterologous promoter in CV-1 cells. Also, this novel p53 sequence, when situated in the native 168-bp rat CKM promoter, conferred p53-mediated activation equal to or greater than that of the originally characterized far-upstream (bp -3160) mouse CKM p53 element. Therefore, CKB and CKM may be among the few cellular genes which could be targets of p53 in vivo. In addition, we analyzed a series of missense mutants with alterations in conserved region II of p53. Mutations affected p53 transrepression and transactivation activities differently, indicating that these activities in p53 are separable. The ability of p53 mutants to transactivate correlated well with their ability to inhibit transformation of rat embryonic fibroblasts by adenovirus E1a and activated Ras.  相似文献   

17.
Wang PF  Kenyon GL  McLeish MJ 《IUBMB life》2006,58(7):421-428
Creatine kinase (CK) plays an important role in maintaining a constant ATP:ADP ratio during periods of high energy usage. Elevated levels of CK give an early indication of myocardial infarction. The enzyme has four major isozymes with heterogeneity being observed for each of them. In many cases the source of the heterogeneity is unclear. However, some of the isoforms are known to result from exposure to serum proteases, and analysis of the plasma isoforms provides an estimate of the time of onset of the infarction. Somewhat surprisingly, isoelectric focusing (IEF) experiments provided evidence of heterogeneity in human muscle CK (HMCK) expressed in E. coli. To investigate this further, HMCK was purified to apparent homogeneity utilizing Blue Sepharose affinity chromatography and HiPrep Q anion exchange chromatography. Additional purification on a PBE 94 chromatofocusing column resulted in four fractions, three of which, HMCK I - III, were characterized. The three isoforms are all active and have similar kinetic parameters. They exhibited identical bands on SDS PAGE but different anodal mobility on non-denaturing gels. Modification of C-terminal and/or cysteine residues has been ruled out, and deamidation of asparagine or glutamine residue(s) is proposed to be the cause of isoform formation. In addition each of these isoforms showed a similar four-band pattern on a carrier ampholytes-based IEF gel. Two-dimensional IEF analysis showed that an equilibrium was established between the four bands, suggesting that the four components were unstable and generated only when the protein was subjected to IEF.  相似文献   

18.
GdmCl-induced unfolding of rabbit muscle creatine kinase, CK, has been studied by a variety of physico-chemical methods including near and far UV CD, SEC, intrinsic fluorescence (intensity, anisotropy and lifetime) as well as intensity and lifetime of bound ANS fluorescence. The formation of several stable unfolding intermediates, some of which were not observed previously, has been established. This was further confirmed by representation of fluorescence data in terms of "phase diagram", i.e. I(lambda1) versus I(lambda2) dependence, where I(lambda1) and I(lambda2) are fluorescence intensity values measured on wavelengths lambda(1) and lambda(2) under the different experimental conditions for a protein undergoing structural transformations. The unfolding behavior of CK was shown to be strongly affected by association of partially folded intermediates. A model of CK unfolding, which takes into account both structural perturbations and association of partially folded intermediates has been elaborated.  相似文献   

19.
Creatine kinase from pigeon breast muscle was obtained in a homogeneous (as evidenced from polyacrylamide gel SDS electrophoresis) state. The molecular mass of the enzyme monomer is 43,000. Ultracentrifugation in a sucrose density gradient and gel filtration revealed that the enzyme is present in solution as a mixture of two major forms, i.e., octamer and dimer, which differ in their activity. The decrease of ionic strength from 0.25 to 0.02 results in reversible dissociation of the octameric form. A temperature rise from 5 degrees to 20 degrees C or the nature of monovalent anions (e.g., Cl-, CH3COO-, NO3-) and cations (K+, Na+) present in the medium do not influence the distribution of oligomeric forms. At pH 6.0 the major form is represented by the octamer; its dissociation is caused by an increase of pH. The octamer dissociation occurs in a mixture of substrates of the creatine kinase reaction in the presence of Mg2+; no such dissociation is observed in the absence of Mg2+ and in the presence of each of the reaction substrates. The non-interacting pair of substrates--ADP and creatine--causes the dissociation of the octamer in the presence of nitrate ions but not acetate. It is concluded that the dissociating effect of substrates is due to the conformational changes of subunits during catalysis. At physiological concentrations of nucleotide substrates the degree of octamer dissociation depends on the ratio of creatine phosphate and creatine concentrations, as well as on the presence of chlorine and phosphate ions. A qualitative estimation of the rate of pH- and substrate-dependent dissociation of creatine kinase octamer revealed that under the given experimental conditions the pH-dependent dissociation is completed within hours, whereas the substrate-dependent one--within seconds or minutes. According to its properties, mitochondrial creatine kinase from pigeon breast muscle is close to its bovine heart counterpart; the observed differences were found to be quantitative.  相似文献   

20.
Inhibition of muscle pyruvate kinase by creatine phosphate   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号