首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The earliest phase of graft rejection in earthworms, the recognition of foreign tissue antigens, has been subjected to analysis by confronting host leukocytes with foreign erythrocytes. Only rabbit and rat erythrocytes significantly prevented healing of allografts when grafts were transplanted and erythrocytes injected simultaneously. In contrast, autografts and allografts transplanted on worms injected 1 or 2 days before grafting were never affected. Since earthworms readily produce higher titers of erythrocyte agglutinins at 24 h postinjection than at later times, we propose a hypothetical scheme of earthworm leukocyte interactions that may occur during the early phases of graft healing and of agglutinin synthesis.  相似文献   

2.
The role of IFN-gamma in the pathology of experimental endotoxemia   总被引:21,自引:0,他引:21  
Proinflammatory cytokines provoked by circulating bacterial LPS mediate many of the destructive host responses characteristic of septic shock. To determine if the lymphokine IFN-gamma has a similar pathogenic role during endotoxic shock, mice were pretreated with murine rIFN-gamma (rMuIFN-gamma) at various times relative to challenge with Salmonella enteritidis LPS. Subsequent mortality was increased when rMuIFN-gamma was administered before or up to 4 h after endotoxin challenge. Pretreatment with rMuIFN-gamma resulted in nearly fivefold increases in serum TNF during endotoxemia, but TNF levels were unaffected by IFN administered after endotoxin. The increased levels of serum TNF probably reflected enhanced translation of this factor, as tissue expression of TNF mRNA did not increase correspondingly in IFN-pretreated mice. To examine the role of IFN-gamma produced endogenously during endotoxemia, mice were pretreated with 0.5 mg of anti-IFN-gamma mAb before endotoxin injection. This treatment significantly reduced mortality from endotoxic shock but caused only minor decreases in serum TNF. Anti-IFN-gamma administered 2 h after endotoxin was similarly protective. These results demonstrate a significant role for IFN-gamma in the pathology of septic shock, both indirectly as an activator of monokines known to promote lethality and possibly by other, late-acting mechanisms.  相似文献   

3.
Borrelia burgdorferi, the agent of Lyme disease, promotes proinflammatory changes in the endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, 7 of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by the endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed the endothelium exposed to B. burgdorferi and IFN-gamma, as compared with unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across the B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.  相似文献   

4.
5.
6.
7.
IFN-gamma is an important mediator of cellular resistance against microbial pathogens and tumor cells due in part to its potent capacity to activate macrophages for enhanced cytotoxicity. The present study demonstrates that TNF-alpha regulates the expression of enhanced antimicrobial activity by triggering IFN-gamma primed macrophages to kill or inhibit intracellular Toxoplasma gondii. Resident mouse macrophages stimulated with rIFN-gamma at levels up to 2500 U/ml failed to display enhanced antitoxoplasmal activity when cultured in vitro under low endotoxin conditions (less than 10 pg/ml), but were triggered by addition of small amounts of LPS (0.1 ng/ml). A similar requirement for LPS as a second signal necessary to trigger antitoxoplasmal activity was observed when IFN-gamma was administered to mice in vivo. The essential nature of this triggering step allowed us to explore the role of cytokines that act as endogenous regulators of macrophage activation. rTNF-alpha, although unable to confer antitoxoplasmal activity when used alone to treat macrophages, was capable of triggering IFN-gamma-primed macrophages cultured under low endotoxin conditions. The ability of TNF-alpha to trigger IFN-gamma-primed macrophages was blocked by rabbit anti-TNF-alpha polyclonal antisera but was not affected by polymyxin B indicating that TNF-alpha triggering was not due to contamination with LPS. Collectively, these findings demonstrate that TNF-alpha performs an important regulatory role in the expression of enhanced anti-microbial activity by IFN-gamma-primed macrophages.  相似文献   

8.
The depletion of an essential amino acid, tryptophan, caused by induction of indoleamine 2,3-dioxygenase (IDO), has been shown to be a mechanism involving self-defense against inhaled microorganisms and tumor growth. We recently reported that the IDO is dramatically (approximately 50-fold) induced in allografted tumor (3-methylcholanthrene-induced ascites type tumor cells) cells undergoing rejection, and that the enzyme is induced by factor(s) released through the interaction of allografted tumor cells with infiltrating leukocytes. The culture supernatant of infiltrating leukocytes, which were harvested on day 7 after tumor transplantation, induced the highest IDO activity in the tumor cells. The inducer activity was completely neutralized by the addition of antibody to IFN-gamma but not by antibody to IFN-alpha/beta. Approximately 6 U/ml of IFN-gamma was detected by an ELISA assay in the 12-h culture supernatant with 2 x 10(6) leukocytes/ml, and rIFN-gamma at 6 U/ml induced IDO in 3-methylcholanthrene-induced ascites type tumor cells to the same extent as IFN-gamma in the culture supernatant. Moreover, i.p. administration of antibody to IFN-gamma almost completely inhibited the induction of IDO in the allografted tumor cells. These observations indicate that the factor responsible for IDO induction in the allografted tumor cells is IFN-gamma.  相似文献   

9.
IL-12 and IFN-gamma positively regulate each other and type 1 inflammatory responses, which are believed to cause tissue damage in autoimmune diseases. We investigated the role of the IL-12/IFN-gamma (Th1) axis in the development of autoimmune myocarditis. IL-12p40-deficient mice on a susceptible background resisted myocarditis. In the absence of IL-12, autospecific CD4(+) T cells proliferated poorly and showed increased Th2 cytokine responses. However, IFN-gamma-deficient mice developed fatal autoimmune disease, and blockade of IL-4R signaling did not confer susceptibility to myocarditis in IL-12p40-deficient mice, demonstrating that IL-12 triggers autoimmunity by a mechanism independent of the effector cytokines IFN-gamma and IL-4. In conclusion, our results suggest that the IL-12/IFN-gamma axis is a double-edged sword for the development of autoimmune myocarditis. Although IL-12 mediates disease by induction/expansion of Th1-type cells, IFN-gamma production from these cells limits disease progression.  相似文献   

10.
In this study we determined whether minor H-specific cytotoxic T cells and their precursors (pTc) are present at the site of rejection of minor H disparate tumor allografts. Lymphocytes were retrieved from eyes of BALB/c mice that received subconjunctival injections of minor H-incompatible P815 tumor cells. The lymphocytes were then assayed for direct cytotoxic activity as well as precursor frequency by limiting dilution. Similar assays were conducted on cells obtained from the draining lymph nodes and from the spleen. As expected, tumor rejection was accompanied by significant clonal expansion of minor H-specific pTc within the draining lymph node and the spleen. A correspondingly high frequency of pTc was also detected at the graft site. More importantly, fully functional cytotoxic T cells were recovered from the tumor graft site during rejection, but no similarly active cells were found in either the draining nodes or spleen. We conclude that, after Ag stimulation, pTc are generated in draining central lymphoid compartments. From this generative site, the precursor cells then disseminate systemically, gradually reaching and infiltrating the tumor graft site. A further activation step, dependent upon Ag and T cell help, permits these cells to mature into fully active cytotoxic cells which can then effect tumor rejection. We propose that the terminal stage(s) of pTc activation is promoted by lymphokines released locally from TDH cells that are also generated during the alloimmune response and simultaneously infiltrate the site.  相似文献   

11.
TNF and IFN-gamma are thought to be involved in the immune response to mycobacterial infection because they exhibit antimycobacterial effects in vitro. To investigate the roles of these cytokines in vivo at the site of disease activity in human tuberculosis, we evaluated local cytokine production in patients with tuberculous pleuritis. Both TNF and IFN-gamma were selectively concentrated 5- to 30-fold in pleural fluid, compared to blood of the same patients. Messenger RNA for both cytokines was detected in pleural tissue by in situ hybridization, suggesting that selective cytokine concentration is due to local cytokine production. Two Mycobacterium tuberculosis cell wall components, the protein-peptidoglycan complex and lipoarabinomannan, caused dose-dependent release of TNF by pleural fluid mononuclear cells and may constitute the stimuli for TNF production in the pleural space. In contrast to results obtained for TNF release, the protein-peptidoglycan complex, but not lipoarabinomannan, stimulated IFN-gamma release by pleural fluid mononuclear cells. The clinical manifestations of tuberculous pleuritis, such as fever, exudative pleural effusion, and tissue necrosis, may be due to the effects of elevated local TNF concentrations, produced in response to mycobacterial cell wall components.  相似文献   

12.
13.
14.
In transplantation, activation of complement has largely been equated to antibody-mediated rejection, but complement is also important in recognition of apoptotic and necrotic cells as well as in modifying antigen presentation to T cells and B cells. As a part of the innate immune system, complement is one of the first responses to injury, and it can determine the direction and magnitude of the subsequent responses. Consequently, the effects of complement in allorecognition and graft rejection are increased when organs are procured from cadaver donors because these organs sustain a series of stresses from brain death, prolonged life support, ischemia and finally reperfusion that initiate proinflammatory processes and tissue injury. In addition, these organs are transplanted to patients, who frequently have been sensitized to histocompatibility antigens as the result of transfusions, pregnancies or transplants.Complement activation generates a series of biologically active effector molecules that can modulate graft rejection by directly binding to the graft or by modifying the response of macrophages, T and B cells of the recipient. However, complement is regulated and the process of regulation produces split products that can decrease as well as increase immune responses. Small animal models have been developed to test these variables. The guide for evaluating results from these models remains clinical findings because there are significant differences between the rodent and human complement systems.  相似文献   

15.
Human leukocyte antigen (HLA)-G exhibits immunotolerogenicity and is related to allograft acceptance. Qa-2 is the murine homolog of HLA-G; it has structure and functions similar to those of HLA-G. We investigated the dynamic expression of Qa-2 in skin allografts by immunohistochemistry and on peripheral blood lymphocyte subsets by flow cytometry during the entire process of acute graft rejection (AGR) with a murine skin transplantation model to determine its relationship with the pathological changes of allografts and the influence of immunosuppressive therapy. In grafts without immunosuppressive treatment, Qa-2 did not exhibit obvious changes in syngeneic and allogeneic recipients. In contrast, with immunosuppressant-treated grafts, positive expression of Qa-2 was observed. It remained at high levels in the immunosuppressant-treated syngeneic group; however, it became weakly positive and even negative in infiltrating inflammatory cells as AGR advanced, but it remained strongly positive in other skin tissues throughout the AGR process. Qa-2 expression on CD4(+) and CD8(+) peripheral blood lymphocyte subsets remained stable at a normal level in the non-immunosuppressant-treated syngeneic group. Immunosuppressive treatment can also significantly upregulate Qa-2. In the allogeneic groups, decreased expression was observed when AGR was at histological grades 1 to 2 (well before gross rejection was observed). Qa-2 was upregulated again after the graft was rejected completely. The results suggest that the increase in Qa-2 may be attributed to the use of immunosuppressive treatments. Moreover, Qa-2 expression decreased significantly with AGR progression, suggesting that it may be a potential marker for predicting AGR, especially in the presence of immunosuppressive agents.  相似文献   

16.
Alarm substances elicit behavioural responses in a wide range of animals but effects on early embryonic development are virtually unknown. Here we investigated whether skin injury-induced alarm substances caused physiological responses in embryos produced by two Danio species (Danio rerio and Danio albolineatus). Both species showed more rapid physiological development in the presence of alarm substance, although there were subtle differences between them: D. rerio had advanced muscle contraction and heart function, whereas D. albolineatus had advanced heart function only. Hence, alarm cues from injured or dying fish may be of benefit to their offspring, inducing physiological responses and potentially increasing their inclusive fitness.  相似文献   

17.
《Autophagy》2013,9(6):860-861
Gangliosides are abundantly expressed in the nervous system, and deregulated expression or activity of gangliosides is associated with the progression of various disorders, including lysosomal storage diseases, Guillian-Barre syndrome, and Alzheimer disease. By contrast, previous studies show that GM1 ganglioside may act in a protective manner in the drug (e.g., MPTP and 6-OHDA)-induced Parkinsonian models, although the precise mechanisms have not been well addressed. In our recent publication, dementia with Lewy bodies (DLB)-linked neuroblastoma cells were treated with D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthetase. These PDMP-treated cells develop lysosomal diseases characterized by reduced lysosomal activity, enhanced lysosomal permeability and cytotoxicity. Furthermore, PDMP-mediated inhibition of autophagy-lysosomal pathway result in both accumulation of α-synuclein and mutant β-synuclein. Finally, these phenotypes are reversed by ganglioside treatment. Taken together, our results suggest that endogenous gangliosides may play a protective role against the lysosomal pathology of synucleinopathies.  相似文献   

18.
We have previously reported that the cytokines IFN-gamma and TNF-alpha each upregulate the expression of class I MHC proteins and, in combination, induce the expression of class II MHC proteins on pancreatic islet cells. IFN-gamma and TNF-alpha are therefore implicated in the immunologic destruction of beta-cells in insulin-dependent diabetes mellitus. The objective of the present study was to define the effects of IFN-gamma and TNF-alpha on the function and viability of murine pancreatic islet beta-cells in vitro. Exposure of islets for 3 days to 200 U/ml of either IFN-gamma or TNF-alpha did not affect glucose-stimulated insulin release, but at higher concentrations (2000 U/ml) of either cytokine there was significant inhibition of glucose-stimulated insulin release. In combination, IFN-gamma and TNF-alpha each at 200 U/ml caused significant inhibition of glucose-stimulated insulin release; at 2000 U/ml glucose-stimulated insulin release was abolished. In time-course experiments, glucose-stimulated insulin release from islets exposed to IFN-gamma and TNF-alpha each at 1000 U/ml was significantly increased at 4-h (twofold increase compared with control islets), decreased back to control levels at 18 h, significantly inhibited by 24 h (threefold decrease compared with control islets), and completely abolished by 48 h. The progressive impairment of beta-cell function mediated by IFN-gamma plus TNF-alpha was associated with morphologic derangement of the islets that were almost totally disintegrated by day 6 of exposure to the cytokines. At day 6, insulin content of the islets was significantly reduced by exposure to TNF-alpha but not IFN-gamma. The combination of IFN-gamma and TNF-alpha resulted in a further dose-dependent depletion in insulin content compared with TNF-alpha alone. The synergistic functional and cytotoxic effects of IFN-gamma and TNF-alpha are consistent with a direct role for these cytokines in the destruction of beta-cells in insulin-dependent diabetes.  相似文献   

19.
Because IFN-gamma is the main cytokine activating macrophages and TNF cooperates in this activation, we assessed TNF binding capacity during the course of murine macrophage activation by IFN-gamma. TNF binding to elicited macrophages increased with time, was maximal by 8 h of culture, and required de novo protein synthesis. 125I-TNF bound to about 40,000 sites/cell with a Kd of 1 x 10(-9) M. Cross-linking experiments performed with a bifunctional cross-linking agent revealed a specific band with a m.w. of 94,000. Preincubation of macrophages with IFN-gamma prevented the binding of TNF to receptors. This effect was dose-dependent and maximal at 100 U/ml. IFN-gamma also reduced specific TNF binding to preexisting receptors (50% inhibition in 3 h), but IFN-gamma did not change the internalization rate of TNF. These studies showed that the number of TNF receptors increased on macrophages vs maturation in culture and was negatively controlled by IFN-gamma.  相似文献   

20.
Tumor necrosis factor (TNF)-alpha is a major cytokine implicated in inducing acute and chronic lung injury, conditions associated with surfactant phosphatidylcholine (PtdCho) deficiency. Acutely, TNF-alpha decreases PtdCho synthesis but stimulates surfactant secretion. To investigate chronic effects of TNF-alpha, we investigated PtdCho metabolism in a murine transgenic model exhibiting lung-specific TNF-alpha overexpression. Compared with controls, TNF-alpha transgenic mice exhibited a discordant pattern of PtdCho metabolism, with a decrease in PtdCho and disaturated PtdCho (DSPtdCho) content in the lung, but increased levels in alveolar lavage. Transgenics had lower activities and increased immunoreactive levels of cytidylyltransferase (CCT), a key PtdCho biosynthetic enzyme. Ceramide, a CCT inhibitor, was elevated, and linoleic acid, a CCT activator, was decreased in transgenics. Radiolabeling studies revealed that alveolar reuptake of DSPtdCho was significantly decreased in transgenic mice. These observations suggest that chronic expression of TNF-alpha results in a complex pattern of PtdCho metabolism where elevated lavage PtdCho may originate from alveolar inflammatory cells, decreased surfactant reuptake, or altered surfactant secretion. Reduced parenchymal PtdCho synthesis appears to be attributed to CCT enzyme that is physiologically inactivated by ceramide or by diminished availability of activating lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号