首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protoplasts and mitochondria were isolated from leaves of homozygous barley ( Hordeum vulgare L.) mutant deficient in glycine decarboxylase complex (GDC, EC 2.1.2.10) and wild-type plants. The photosynthetic rates of isolated protoplasts from the mutant and wild-type plants under saturating CO2 were similar, but the respiratory rate of the mutant was two-fold higher. Respiration in the mutant plants was much more strongly inhibited by antimycin A than in wild-type plants and a low level of the alternative oxidase protein was found in mitochondria. The activities of NADP- and NAD-dependent malate dehydrogenases were also increased in mutant plants, suggesting an activation of the malate-oxaloacetate exchange for redox transfer between organelles. Mutant plants had elevated activities of NADH- and NADPH-dependent glyoxylate/hydroxypyruvate reductases, which may be involved in oxidizing excess NAD(P)H and the scavenging of glyoxylate. We estimated distribution of pools of adenylates, NAD(H) and NADP(H) between chloroplasts, cytosol and mitochondria. Under photorespiratory conditions, ATP/ADP and NADPH/NADP ratios in the mutant were higher in chloroplasts as compared to wild-type plants. The cytosolic NADH/NAD ratio was increased, whereas the ratio in mitochondria decreased. It is concluded that photorespiration serves as an effective redox transfer mechanism from the chloroplast. Plants with a lowered GDC content are deficient in this mechanism, which leads to over-reduction and over-energization of the chloroplasts.  相似文献   

2.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

3.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

4.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   

5.
The yeast Candida parapsilosis possesses two routes of electron transfer from exogenous NAD(P)H to oxygen. Electrons are transferred either to the classical cytochrome pathway at the level of ubiquinone through an NAD(P)H dehydrogenase, or to an alternative pathway at the level of cytochrome c through another NAD(P)H dehydrogenase which is insensitive to antimycin A. Analyses of mitoplasts obtained by digitonin/osmotic shock treatment of mitochondria purified on a sucrose gradient indicated that the NADH and NADPH dehydrogenases serving the alternative route were located on the mitochondrial inner membrane. The dehydrogenases could be differentiated by their pH optima and their sensitivity to amytal, butanedione and mersalyl. No transhydrogenase activity occurred between the dehydrogenases, although NADH oxidation was inhibited by NADP+ and butanedione. Studies of the effect of NADP+ on NADH oxidation showed that the NADH:ubiquinone oxidoreductase had Michaelis-Menten kinetics and was inhibited by NADP+, whereas the alternative NADH dehydrogenase had allosteric properties (NADH is a negative effector and is displaced from its regulatory site by NAD+ or NADP+).  相似文献   

6.
Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.  相似文献   

7.
Plant mitochondria contain alternative external NAD(P)H dehydrogenases,which oxidize cytosolic NADH or NADPH and reduce ubiquinonewithout inherent linkage to proton pumping and ATP production.In potato, St-NDB1 is an external Ca2+-dependent NADPH dehydrogenase.The physiological function of this enzyme was investigated inhomozygous Nicotiana sylvestris lines overexpressing St-ndb1and co-suppressing St-ndb1 and an N. sylvestris ndb1. In leafmitochondria isolated from the overexpressor lines, higher activityof alternative oxidase (AOX) was detected. However, the AOXinduction was substantially weaker than in the complex I-deficientCMSII mutant, previously shown to contain elevated amounts ofNAD(P)H dehydrogenases and AOX. An aox1b and an aox2 gene wereup-regulated in CMSII, but only aox1b showed a response, albeitsmaller, in the transgenic lines, indicating differences inAOX activation between the genotypes. As in CMSII, the increaseof AOX in the overexpressing lines was not due to a generaloxidative stress. The lines overexpressing St-ndb1 had consistentlylowered leaf NADPH/NADP+ ratios in the light and variably decreasedlevels in darkness, but unchanged NADH/NAD+ ratios. CMSII insteadhad similar NADPH/NADP+ and lower NADH/NAD+ ratios than thewild type. These results demonstrate that St-NDB1 is able tomodulate the cellular balance of NADPH and NADP+ at least inthe day and that reduction of NADP(H) and NAD(H) is independentlycontrolled. Similar growth rates, chloroplast malate dehydrogenaseactivation and xanthophyll ratios indicate that the change inreduction does not communicate to the chloroplast, and thatthe cell tolerates significant changes in NADP(H) reductionwithout deleterious effects.  相似文献   

8.
NADP+-dependent isocitrate dehydrogenases (ICDHs) are enzymes that reduce NADP+ to NADPH using isocitrate as electron donor. Cytosolic and mitochondrial isoforms of ICDH have been described. Little is known on the expression of ICDHs in brain cells. We have cloned the rat mitochondrial ICDH (mICDH) in order to obtain the sequence information necessary to study the expression of ICDHs in brain cells by RT-PCR. The cDNA sequence of rat mICDH was highly homologous to that of mICDH cDNAs from other species. By RT-PCR the presence of mRNAs for both the cytosolic and the mitochondrial ICDHs was demonstrated for cultured rat neurons, astrocytes, oligodendrocytes and microglia. The expression of both ICDH isoenzymes was confirmed by western blot analysis using ICDH-isoenzyme specific antibodies as well as by determination of ICDH activities in cytosolic and mitochondrial fractions of the neural cell cultures. In astroglial and microglial cultures, the total ICDH activity was almost equally distributed between cytosolic and mitochondrial fractions. In contrast, in cultures of neurons and oligodendrocytes about 75% of total ICDH activity was present in the cytosolic fractions. Putative functions of ICDHs in cytosol and mitochondria of brain cells are discussed.  相似文献   

9.
The metabolism of L-asparagine in pancreatic islets was investigated. The deamidation of L-asparagine and the conversion of aspartate to oxalacetate, by transamination, may occur in both the cytosol and mitochondria. Oxalacetate is then converted to pyruvate in part via phosphoenolpyruvate and in part via malate. The latter modality, by consuming NADH and generating NADPH, may lead to changes in the redox state of the cytosolic NADH/NAD+ and NADPH/NADP+ couples. Such changes may in turn account, in part at least, for the capacity of L-asparagine to augment insulin release induced by certain nutrient secretagogues.  相似文献   

10.
Data are analyzed on a regulatory effect of the redox state of NAD- and NADP-couples (the free NAD+-/NADH, NADP+/NADPH ratios) on certain enzymic links of lipogenesis. A concept is formulated on coordination of the activity of lipogenesis key enzymes by a common signal, supposedly by changes in the NAD+/NADH and NADP+/NADPH values in cytoplasm and mitochondria of the rat liver cells. High values of the NAD- and NADP-couples ratios, activation of the citrate transport from mitochondria to cytoplasm and of enzymic systems supplying lipogenesis with a substrate--acetyl-CoA, reducing equivalents (NADPH) determine the maximal lipid synthesis rate observed in adaptive hyperlipogenesis. The inhibitory action of nicotinamide on lipogenesis is realized at the level of systems providing a high metabolic pool of acetyl-CoA and dehydrogenases, producing NADPH in cytoplasm of liver cells.  相似文献   

11.
Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.  相似文献   

12.
Midgut mitochondria from fifth larval instar Manduca sexta exhibited a transhydrogenase that catalyzes the following reversible reaction: NADPH + NAD(+) <--> NADP(+) + NADH. The NADPH-forming transhydrogenation occurred as a nonenergy- and energy-linked activity. Energy for the latter was derived from the electron transport-dependent utilization of NADH or succinate, or from Mg++-dependent ATP hydrolysis by ATPase. The NADH-forming and all of the NADPH-forming reactions appeared optimal at pH 7.5, were stable to prolonged dialysis, and displayed thermal lability. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited the NADPH --> NAD(+) and energy-linked NADH --> NADP(+) transhydrogenations, but not the nonenergy-linked NADH --> NADP(+) reaction. Oligomycin only inhibited the ATP-dependent energy-linked activity. The NADH-forming, nonenergy-linked NADPH-forming, and the energy-linked NADPH-forming activities were membrane-associated in M. sexta mitochondria. This is the first demonstration of the reversibility of the M. sexta mitochondrial transhydrogenase and, more importantly, the occurrence of nonenergy-linked and energy-linked NADH --> NADP(+) transhydrogenations. The potential relationship of the transhydrogenase to the mitochondrial, NADPH-utilizing ecdysone-20 monooxygenase of M. sexta is considered.  相似文献   

13.
Glyoxysomes, mitochondria, and plastids were separated from the cytosol of germinating castor bean endosperm by sucrose gradient centrifugation in a vertical rotor (25 min, 50,000gav). The amounts of nicotinamide cofactors, NAD(H) and NADP(H), retained in the isolated organelle fractions were measured by enzyme cycling techniques. The NAD(H) was equally distributed between the cytosol and the mitochondria with a small amount in the glyoxysomes. The mitochondria retained 4 pmol of NAD(H)/ μg protein, about seven times as much as the glyoxysomes. Most of the NADP(H) was in the cytosol. However, the glyoxysomes and plastids retained significant amounts, both having 0.3 pmol NADP(H)/μg protein, twice that in the mitochondria. The subcellular distribution of NADP(H) was compared to the location of dehydrogenases capable of using this cofactor. The cytosol and plastids contained 6-phosphogluconate dehydrogenase. NADP isocitrate dehydrogenase was found in the glyoxysomes, in mitochondria, and in an unidentified subcellular fraction obtained at 1.16 g/ml in the density gradients. Knowledge of the quantities of NADP(H) and NAD(H) retained in the isolated organelles should make it possible to investigate their reduction and reoxidation in intact organelles.  相似文献   

14.
Bisubstrate inhibitors, obtained by covalently linking 2-oxoglutarate with NAD+ and NADP+, were synthesized and tested for their ability to inhibit NAD+- and NADP+-dependent isocitrate dehydrogenases from pig heart mitochondria. The NADP+-dependent enzyme was specifically inhibited by the NADP oxoglutarate adduct and not by the NAD adduct. The NADP adduct was competitive with both coenzyme and substrate, isocitrate. In contrast, the NAD+-dependent enzyme was inhibited by both adducts. NAD oxoglutarate is competitive with both NAD+ and isocitrate while the NADP adduct is competitive with isocitrate but not with NAD+. Nevertheless conditions could be set up so that use of these inhibitors would be feasible for a metabolic study.  相似文献   

15.
Both the external oxidation of NADH and NADPH in intact potato (Solanum tuberosum L. cv. Bintje) tuber mitochondria and the rotenone-insensitive internal oxidation of NADPH by inside-out submitochondrial particles were dependent on Ca2+. The stimulation was not due to increased permeability of the inner mitochondrial membrane. Neither the membrane potential nor the latencies of NAD(+)-dependent and NADP(+)-dependent malate dehydrogenases were affected by the addition of Ca2+. The pH dependence and kinetics of Ca(2+)-dependent NADPH oxidation by inside-out submitochondrial particles were studied using three different electron acceptors: O2, duroquinone and ferricyanide. Ca2+ increased the activity with all acceptors with a maximum at neutral pH and an additional minor peak at pH 5.8 with O2 and duroquinone. Without Ca2+, the activity was maximal around pH 6. The Km for NADPH was decreased fourfold with ferricyanide and duroquinone, and twofold with O2 as acceptor, upon addition of Ca2+. The Vmax was not changed with ferricyanide as acceptor, but increased twofold with both duroquinone and O2. Half-maximal stimulation of the NADPH oxidation was found at 3 microM free Ca2+ with both O2 and duroquinone as acceptors. This is the first report of a membrane-bound enzyme inside the inner mitochondrial membrane which is directly dependent on micromolar concentrations of Ca2+. Mersalyl and dicumarol, two potent inhibitors of the external NADH dehydrogenase in plant mitochondria, were found to inhibit internal rotenone-insensitive NAD(P)H oxidation, at the same concentrations and in manners very similar to their effects on the external NAD(P)H oxidation.  相似文献   

16.
17.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

18.
19.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

20.
Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号