首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2021,120(23):5322-5332
The electrostatic interaction of RNA with its aqueous environment is most relevant for defining macromolecular structure and biological function. The attractive interaction of phosphate groups in the RNA backbone with ions in the water environment leads to the accumulation of positively charged ions in the first few hydration layers around RNA. Electrostatics of this ion atmosphere and the resulting ion concentration profiles have been described by solutions of the nonlinear Poisson-Boltzmann equation and atomistic molecular dynamics (MD) simulations. Much less is known on contact pairs of RNA phosphate groups with ions at the RNA surface, regarding their abundance, molecular geometry, and role in defining RNA structure. Here, we present a combined theoretical and experimental study of interactions of a short RNA duplex with magnesium (Mg2+) ions. MD simulations covering a microsecond time range give detailed hydration geometries as well as electrostatics and spatial arrangements of phosphate-Mg2+ pairs, including both pairs in direct contact and separated by a single water layer. The theoretical predictions are benchmarked by linear infrared absorption and nonlinear two-dimensional infrared spectra of the asymmetric phosphate stretch vibration which probes both local interaction geometries and electric fields. Contact pairs of phosphate groups and Mg2+ ions are identified via their impact on the vibrational frequency position and line shape. A quantitative analysis of infrared spectra for a range of Mg2+-excess concentrations and comparison with fluorescence titration measurements shows that on average 20–30% of the Mg2+ ions interacting with the RNA duplex form contact pairs. The experimental and MD results are in good agreement. In contrast, calculations based on the nonlinear Poisson-Boltzmann equation fail in describing the ion arrangement, molecular electrostatic potential, and local electric field strengths correctly. Our results underline the importance of local electric field mapping and molecular-level simulations to correctly account for the electrostatics at the RNA-water interface.  相似文献   

2.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

3.
Cadmium and copper inhibition of nutrient uptake by the green alga Scenedesmus quadricauda is highly pH dependent in an inorganic medium; both metals are less toxic at low pH. The alga was grown in chemostats with both N and P approaching limiting levels; it was then possible to study metal toxicity to the nitrate, ammonium, and phosphate uptake systems of algae in an identical physiological state. When the logarithm of the Cd concentration causing 25% inhibition of nitrate, ammonium, and phosphate uptake was regressed against pH almost perfect linear relationships were obtained. This was also true at the 50% inhibition level, except for a smaller than predicted increase in Cd toxicity to ammonium uptake at pH 8, which may be due to the beginning of Cd precipitation at this pH. Cu2+ toxicity was linearly related to pH for ammonium and phosphate uptake and although, its toxicity for nitrate uptake also increased with pH, the increase was not perfectly linear. The toxicity of total Cu showed no linear relationship to pH. Cd2+ and Cu2+ toxicity increased by up to four orders of magnitude from pH 5 to 8. Competition between free metal and hydrogen ions for uptake sites on the cell surface is suggested as a mechanism increasing the toxicity of free metal, ions as the hydrogen ion content decreases (i.e. at higher pH).  相似文献   

4.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

5.
Research of the entry of rare earth elements Eu3+ and La3+ into plant cell   总被引:8,自引:0,他引:8  
Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La3+) and europium (Eu3+) in the intact plant cells fed by rare earth elements Eu3+ and La3+. Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu3+ fluorescence intensities in such structures significantly increased. Eu3+ can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca2+) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La3+ and Eu3+ in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu3+ and La3+ can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells.  相似文献   

6.
The luminescence of novel rare earth ( Tb 3 + , Eu 3 + and Dy 3 + )‐activated Ba 2 Sr 2 Al 2 O 7 phosphors for solid‐state lighting is presented. The aluminate phosphors were synthesized using a one‐step combustion method. X‐Ray diffraction, scanning electron microscopy and photoluminescence characterizations were performed to understand the mechanism of excitation and the corresponding emission in the as‐prepared phosphor, as characterized the phase purity and microstructure. Improvements in the luminescence properties of the phosphors with rare earth concentration were observed. The phosphor hue could be tuned from blue, green and red by proper selection of rare earth ions in typical concentrations. Effective absorption in the near‐ultraviolet region was observed, which makes the phosphor a potential candidate for ultraviolet light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Li WX  Chai WJ  Liu Y  Li YJ  Ren T  Zhang J  Ao BY 《Luminescence》2012,27(5):431-436
A series of rare earth complexes [(TbxTmy)L5(ClO4)2](ClO4)·3H2O (x:y = 1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L = C6H5CH2SOCH2COC6H5) (Tb(III) luminescence ion; Tm(III) doped inert ion) were synthesized and characterized by elemental analysis, infrared spectra (IR) and 1H‐NMR. The photophysical properties of these complexes were studied in detail using ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra of complexes indicated that the fluorescence emission intensity was significantly enhanced by Tm(III). The complexes showed the best luminescence properties when the mole ratio Tb(III):Tm(III) was 0.990:0.010. The fluorescence intensity could be increased to 390%. Additionally, phosphorescence spectra and the luminescence mechanisms are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
《Luminescence》2003,18(6):341-345
A chemiluminescence (CL) signal was observed when alkaline earth metal ion solution, Mg2+ or Ca2+ or Ba2+, was injected into a reaction mixture of fluorescein and potassium permanganate. A possible CL mechanism is proposed based upon the CL, fluorescence and UV‐visible spectra. Furthermore, the feasibility of the application of these reactions to the analysis of these alkaline earth metal ions was evaluated and the analytical parameters of the methods were determined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Potassium ions at low concentrations stimulate cytokinin-dependent betacyanin synthesis in Amaranthus tricolor seedlings more than other alkali metal ions when tested as the chloride salts. The sequence of relative stimulation is K+ > Rb+ > (Na+ = Li+). Calcium and Mg2+ ions are inhibitory at concentrations > 1 millimolar when tested as chlorides. Anions also have an effect on the degree of alkali metal stimulation in the order PO43− > NO3 > Cl. The high activity of phosphate may be partly due to its chelating effect on inhibitory Ca2+ ions, or to effects on K+ uptake. A mixture of Na+ and K+ in the presence of phosphate is more effective than either cation alone. This result may be due either to effects on tyrosine transport or on the potassium uptake system. Phytochrome-dependent betacyanin synthesis shows the same stimulation by Na+ plus K+. The effect of a number of inhibitors of transport systems on betacyanin accumulation is reported. The possible role of the ionic environment of cells in their metabolic regulation is discussed, particularly in relation to cytokinin action.  相似文献   

10.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

11.
Callus cultures of Saussurea medusa were cultivated on solid culture medium supplemented with either Ce3+, La3+, Nd3+ or a mixture of rare earth elements. Ce3+, 0.05 mM, gave the highest biomass (0.53 g dry wt per flask) and total flavonoids (27.5 mg per flask), which were, 70% and 100% higher than those without Ce3+ addition, respectively. Ce3+, 0.01–0.1 mM, or La3+, 0.05 mM, or the mixture of rare earth elements, 0.025–0.1 mM, can substitute for 6-benzyladenine, and 0.025 mM Ce3+ can partly substitute for naphthaleneacetic acid in promoting cell growth and biosynthesis of total flavonoids in S. medusa.  相似文献   

12.
F Mazzei  G Onori 《Biopolymers》1984,23(4):759-766
The uv absorption spectra and melting profiles of an initially ion-free solution of E. coli unfractionated tRNA are significantly modified by the addition of either Na+, Mg2+, or Mn2+ or of other first-series transition-metal ions such as Ni2+, Co2+, and Zn2+. The main effect of the addition of all monovalent or divalent cations examined is an increase of the ordered and stacking stabilized tRNA structure, as revealed by a drop in the absorption near 260 nm, as well as in the 4-TU absorption region. Sharp differences have, however, been detected in the 290–305-nm range in the presence of the various ions studied. When transition-metal ions were added to a tRNA solution, an absorption peak appeared at 294 nm. This effect is interpreted as a perturbation of the electronic structure of the bases due to direct binding of metal ions to the bases. An analysis of the variation in the spectrum as a function of metal concentration and of the thermal melting reversibility in the presence of various metal ions supports the conclusion that while all ions investigated are involved in binding to the phosphate groups of tRNA, transition-metal ions are also able to bind directly to the bases.  相似文献   

13.
A venacin, the resistance factor in oat roots against Ophio-bolus graminis var. graminis, and a related triterpeneglycoside, aescin, induced a rapid release of K+ from mycelia of Opbio-bolus graminis and Neurospora crassa, suspended in phosphate buffer. N. crassa also released Mg2+ whereas no outflux of Mg2+ was found from O. graminis. The inhibitors induced a release of inorganic phosphate into acetate buffer from Neurospora crassa. The amount of inorganic phosphate in the mycelia decreased when O. graminis and N. crassa were treated with the inhibitors in phosphate buffer. In other media the inhibitors had weak or no effects on the ion contents of the mycelia. The effect of aescin was low in Aspergillus niger and nil in Pythium irregulare. However, high amounts of K+, Mg2+, and phosphate ions were lost to the medium when the mycelium of P. irregulare, washed with distilled water, was suspended in different buffers. The ions lost were reabsorbed during the experimental period. The leakage of ions indicates that the plasma membrane of the growth sensitive fungi is severely affected by the inhibitors, while a corresponding effect on the growth insensitive fungi does not take place.  相似文献   

14.
Mercuric ion interacts with indoles, including tryptophan, to produce complexes whose absorption spectra are broader, less structured, and red-shifted as compared with those of the parent compound. Fluorescence and phosphorescence are totally quenched. In a survey of the effect of transition metal ions on tryptophan fluorescence, the strong quenching by Hg2+ was unique among the uncolored ions. Mercuric nitrate quenched the fluorescence of practically every protein tested, but the sensitivity to quenching varied with the protein. Ovalbumin was the most sensitive to quenching by Hg2+, over 70% of the intrinsic fluorescence being quenched by 2 moles of mercuric ion. Difference absorption spectra show that sulfhydryl groups are attacked by these reagents and Hg2+ is, in addition, perturbing the environment near some tryptophans. In contrast to Hg2+, Zn2+ had negligible effect on protein fluorescence. The emission spectra of proteins which were partly quenched by mercuric ion showed shifts in their maxima to higher or lower wavelengths. This suggests that mercuric ion quenched certain tryptophans more than others, and supports the idea that protein fluorescence is heterogeneous and arises from tryptophans in different microenvironments.  相似文献   

15.
Rapid Effects of Abscisic Acid on Ion Uptake in Sunflower Roots   总被引:1,自引:0,他引:1  
Short-term effects of ABA, ABA + kinetin and kinetin on ion (86Rb-potassium and phosphate) and water uptake in sunflower plants (Helianthus annuus var. californicus) were examined with a continuous-recording technique. Ion uptake in the roots and transport to the shoots were also investigated by conventional tracer uptake experiments and by sap bleeding experiments with excised roots. After addition of 5 × 10?6-4 × 10?5M ABA to the root medium there was an immediate decrease (30–70%) in the rate of ion uptake which lasted 30–70 min. The rate of water uptake was not significantly affected as measured with this method. Ion transport to the shoots and to the bleeding sap of excised roots was decreased by ABA. ABA-induced inhibition of ion uptake was abolished by the presence of kinetin, and uptake was slightly stimulated by 2 × 10?5M kinetin alone. We suggest that concentration gradients of ABA or rapid changes in the ABA-kinetin balance in the roots affect ion uptake and transport.  相似文献   

16.
A new ion sensor based on hybrid SiO2‐coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu2+ and Ag+ for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu2+ and Ag+ ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu2+ and 39.40 nM for Ag+ were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2S clusters as well as surface defects generated by the exchange of Cu2+ and Ag+ ions with Cd2+ ion in NCs, resulted in PL quenching and other optical spectra changes, including steady‐state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Pyruvate decarboxylase (PDC) was prepared from four-day-old pea seedlings by a procedure which involves extraction of plant material with a phosphate buffer, fractionation of the extract with ammonium sulphate, desalting by dialysis or gel filtration on Sephadex G-25 column, chromatography on DEAE cellulose and filtration on Sepharose 4B. The PDC preparation activity 10 000 U g-1 protein was about 600 fold higher than that of the sodium phosphate buffer extract. According to the enzyme behaviour during the gel filtration on different carriers the molecular mass of pea PDS was estimated at about 106. Magnesium ions and thiamine pyrophosphate were found to be coenzymes of PDC. Cofactors can be removed by 48 h dialysis followed by chromatography on DEAE cellulose. Apoenzym is activated optimally with the concentration of cofactors of 0.002 M. Magnesium ions can be replaced in their activation function by ions of Fe2+, Ni2+, Co2+, Zn2+ and Mn2+. Another ions,i.e. Ba2+, Ca2+, Cd2+, Hg2+ and Cu2+ are inactive. Assumption about the relation between the ion diameter and degree of activation is formulated.  相似文献   

18.
In the current study, the structural and spectroscopic properties of phosphatic shale samples obtained from the Atomic Minerals Directorate for Exploration and Research were probed for potential use as a phosphor material. X‐ray diffraction and Raman and Fourier transform infrared spectroscopy revealed that the beneficiated phosphatic shale samples were primarily monophasic consisting of fluorapatite [Ca5(PO4)3F, (FAP)] with minor traces of haematite (α‐Fe2O3) and calcite (CaCO3). Energy dispersive X‐ray fluorescence revealed the presence of U, Eu, Dy and Tb in the FAP matrix substituted at Ca(I) and Ca(II) sites of FAP. A reduced optical direct band gap of 4.46 eV was calculated from the Tauc plot. Photoluminescence spectral studies revealed multicolour emissions (red, yellow, green and blue) on ultraviolet light excitation that were attributed to luminescence spectra from rare earth ions Eu3+, Tb3+, U4+ and U6+ in the FAP matrix. The overall emissions for the rare earth and actinide‐doped FAP were obtained in the cool white region and the corresponding Commission Internationale de l’Eclairage chromaticity coordinates were calculated to be (0.274, 0.317). The corresponding colour correlated temperature obtained was 9342 K. Furthermore, phosphatic shale had a high room temperature dielectric constant of 11 at a frequency of 1 kHz that demonstrated its suitability for use in biological sensors. The study showed that natural phosphatic shale could be a potential material for optical, biological and dielectric applications.  相似文献   

19.
A venacin, the resistance factor in oat roots against Ophiobolus graminis var. graminis, and a related triterpeneglycoside, aescin, inhibited the uptake of K+ and Mg2+ in the fungal mycelium both in phosphate and succinate buffers. The uptake of the cations in Neurospora crassa was similarly inhibited when the inhibitors were dissolved in phosphate or acetatebuffer, while no decrease in the uptake of K+ and Mg2+ was observed when the inhibitors were dissolved in succinate buffer. The uptake of cations in Aspergillus niger and Pythium irregulare was more or less unaffected by aescin. The uptake of inorganic phosphate was in no case inhibited, but some decrease of the accumulation of inorganic phosphate in Ophiobolus graminis and Ncurospora crassa due to inhibitor treatment in phosphate buffer was observed. No accumulation of Ca2+ was observed in any of the tested fungi.  相似文献   

20.
1,3- bis-[4-(N-aza-15-crown-5)-benzylidene]cyclopentanone-2 ( I), a ketocyanine dye, was synthesized. The electronic absorption and emission spectra, protolytic interactions in aqueous alcohol media and complex formation with alkali earth metals in acetonitrile were studied for the dye ( I) and for several model compounds. It was shown that protonation of both dialkylamino groups of all compounds studied takes place at closely similar pH values. The complexation of alkali earth metals with azacrown derivative ( I) takes place at azacrown moieties and the carbonyl group. The sequence of binding to these sites is different for Mg2+ and Ba2+ ions. The effective ejection of Ba2+ ion out of the azacrown cycle was observed in the excited state, though, as in the case of Mg2+ ion, such process occurred only partially. The results obtained suggest that this azacrown derivative of dibenzylidene cyclopentanone is sensitive to alkali earth ions and has prospects for different biologically oriented applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号