首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In epithelial Kir7.1 channels a non-conserved methionine in the outer pore region adjacent to the G-Y-G selectivity filter (position +2) was found to determine unique properties for permeant and blocking ions characteristic of a K(+) channel in a single-occupancy state. The monovalent cation permeability sequence of Kir7.1 channels expressed in Xenopus oocytes was Tl(+)>K(+)>Rb(+)NH(4)(+)>Cs(+)>Na(+)>Li(+), but the macroscopic conductance for Rb(+) was approximately 8-fold larger than for the smaller K(+) ions, and decreased approximately 40-fold with the conserved arginine at the +2 position (Kir7.1M125R). Moreover, in Kir7.1 Rb(+) restored the typical permeation properties of other multi-ion channels indicating that a stable coordination of permeant ions at the +2 position defines the initial step in the conduction pathway of Kir channels.  相似文献   

2.
The mechanistic link between mitochondrial metabolism and inward rectifier K+ channel activity was investigated by studying the effects of a mitochondrial inhibitor, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) on inward rectifiers of the Kir2 subfamily expressed in Xenopus oocytes, using two-electrode voltage-clamp, patch-clamp, and intracellular pH recording. FCCP inhibited Kir2.2 and Kir2.3 currents and decreased intracellular pH, but the pH change was too small to account for the inhibitory effect by itself. However, pre-incubation of oocytes with imidazole prevented both the pH decrease and the inhibition of Kir2.2 and Kir2.3 currents by FCCP. The pH dependence of Kir2.2 was shifted to higher pH in membrane patches from FCCP-treated oocytes compared to control oocytes. Therefore, the inhibition of Kir2.2 by FCCP may involve a combination of intracellular acidification and a shift in the intracellular pH dependence of these channels. To investigate the sensitivity of heteromeric channels to FCCP, we studied its effect on currents expressed by heteromeric tandem dimer constructs. While Kir2.1 homomeric channels were insensitive to FCCP, both Kir2.1-Kir2.2 and Kir2.1-Kir2.3 heterotetrameric channels were inhibited. These data support the notion that mitochondrial dysfunction causes inhibition of heteromeric inward rectifier K+ channels. The reduction of inward rectifier K+ channel activity observed in heart failure and ischemia may result from the mitochondrial dysfunction that occurs in these conditions.  相似文献   

3.
Blocking cloned inward-rectifier potassium (Kir) channels from the cytoplasmic side was analyzed with a rapid application system exchanging the intracellular solution on giant inside-out patches from Xenopus oocytes in <2 ms. Dependence of the pore-block on interaction of the blocking molecule with permeant and impermeant ions on either side of the membrane was investigated in Kir1.1 (ROMK1) channels blocked by ammonium derivatives and in Kir4.1 (BIR10) channels blocked by spermine. The blocking reaction in both systems showed first-order kinetics and allowed separate determination of on- and off-rates. The off-rates of block were strongly dependent on the concentration of internal and external bulk ions, but almost independent of the ion species at the cytoplasmic side of the membrane. With K+ as the only cation on both sides of the membrane, off-rates exhibited strong coupling to the K+ reversal potential (E(K)) and increased and decreased with reduction in intra and extracellular K+ concentration, respectively. The on-rates showed significant dependence on concentration and species of internal bulk ions. This control of rate-constants by interaction of permeant and impermeant internal and external ions governs the steady-state current-voltage relation (I-V) of Kir channels and determines their physiological function under various conditions.  相似文献   

4.
The inward rectifier K+ channel Kir2.1 contributes to the maintenance of the resting cell membrane potential in excitable cells. Loss of function mutations of KCNJ2 encoding Kir2.1 result in Andersen-Tawil syndrome, a disorder characterized by periodic paralysis, cardiac arrhythmia, and dysmorphic features. The ubiquitously expressed protein kinase B (PKB/Akt) activates the phosphatidylinositol-3-phosphate-5-kinase PIKfyve, which in turn regulates a variety of carriers and channels. The present study explored whether PKB/PIKfve contributes to the regulation of Kir2.1. To this end, cRNA encoding Kir2.1 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild type PKB (PKB), constitutively active T308D,S473DPKB or inactive T308A,S473APKB. Kir2.1 activity was determined by two-electrode voltage-clamp. As a result, PKB and T308D,S473DPKB, but not T308A,S473APKB, significantly increased Kir2.1-mediated currents. The effect of PKB was mimicked by coexpression of PIKfyve but not of S318APikfyve lacking the PKB phosphorylation site. The decay of Kir2.1-mediated currents after inhibition of channel insertion into the cell membrane by brefeldin A (5 μM) was similar in oocytes expressing Kir2.1 + PKB or Kir2.1 + PIKfyve to those expressing Kir2.1 alone, suggesting that PKB and PIKfyve influence channel insertion into rather than channel retrieval from the cell membrane. In conclusion, PKB and PIKfyve are novel regulators of Kir2.1.  相似文献   

5.
We studied the effect of monovalent thallium ion (Tl(+)) on the gating of single Kir2.1 channels, which open and close spontaneously at a constant membrane potential. In cell-attached recordings of single-channel inward current, changing the external permeant ion from K(+) to Tl(+) decreases the mean open-time by approximately 20-fold. Furthermore, the channel resides predominantly at a subconductance level, which results from a slow decay (tau = 2.7 ms at -100 mV) from the fully open level immediately following channel opening. Mutation of a pore-lining cysteine (C169) to valine abolishes the slow decay and subconductance level, and single-channel recordings from channels formed by tandem tetramers containing one to three C169V mutant subunits indicate that Tl(+) must interact with at least three C169 residues to induce these effects. However, the C169V mutation does not alter the single-channel closing kinetics of Tl(+) current. These results suggest that Tl(+) ions change the conformation of the ion conduction pathway during permeation and alter gating by two distinct mechanisms. First, they interact with the thiolate groups of C169 lining the cavity to induce conformational changes of the ion passageway, and thereby produce a slow decay of single-channel current and a dominant subconductance state. Second, they interact more strongly than K(+) with the main chain carbonyl oxygens lining the selectivity filter to destabilize the open state of the channel and, thus, alter the open/close kinetics of gating. In addition to altering gating, Tl(+) greatly diminishes Ba(2+) block. The unblocking rate of Ba(2+) is increased by >22-fold when the external permeant ion is switched from K(+) to Tl(+) regardless of the direction of Ba(2+) exit. This effect cannot be explained solely by ion-ion interactions, but is consistent with the notion that Tl(+) induces conformational changes in the selectivity filter.  相似文献   

6.
K(ATP) channels consist of pore-forming potassium inward rectifier (Kir6.x) subunits and sulfonylurea receptors (SURs). Although Kir6.1 or Kir6.2 coassemble with different SUR isoforms to form heteromultimeric functional K(ATP) channels, it is not known whether Kir6.1 and Kir6.2 coassemble with each other. To define the molecular identity of K(ATP) channels, we used adenoviral gene transfer to express wild-type and dominant-negative constructs of Kir6.1 and Kir6.2 in a heterologous expression system (A549 cells) and in native cells (rabbit ventricular myocytes). Dominant-negative (DN) Kir6.2 gene transfer suppressed current through heterologously expressed SUR2A + Kir6.2 channels. Conversely, DN Kir6.1 suppressed SUR2B + Kir6.1 current but had no effect on coexpressed SUR2A + Kir6. 2. We next probed the ability of Kir6.1 and Kir6.2 to affect endogenous K(ATP) channels in adult rabbit ventricular myocytes, using adenoviral vectors to achieve efficient gene transfer. Infection with the DN Kir6.2 virus for 72 h suppressed pinacidil-inducible K(ATP) current density measured by whole-cell patch clamp. However, there was no effect of infection with the DN Kir6.1 on the K(ATP) current. Based on these functional assays, we conclude that Kir6.1 and Kir6.2 do not heteromultimerize with each other and that Kir6.2 is the sole K(ATP) pore-forming subunit in the surface membrane of heart cells.  相似文献   

7.
Heteromultimerization of different pore-forming subunits is known to contribute to the diversity of inward rectifier K+ channels. We examined if the subunits belonging to different subfamilies Kir2 and Kir3 can co-assemble to form heteromultimers in heterologous expression systems. We observed co-immunoprecipitation of Kir2.1 and Kir3.1 as well as Kir2.1 and Kir3.4 in HEK293T cells. Furthermore, analyses of subcellular localization using confocal microscopy revealed that co-expression of Kir2.1 promoted the cell surface localization of Kir3.1 and Kir3.4 in HEK293T cells. In electrophysiological experiments, co-expression of Kir2.1 with Kir3.1 and/or Kir3.4 in Xenopus oocytes and HEK293T cells did not yield currents with distinguishable features. However, co-expression of a dominant-negative Kir2.1 with the wild-type Kir3.1/3.4 decreased the Kir3.1/3.4 current amplitude in Xenopus oocytes. The results indicate that Kir2.1 is capable of forming heteromultimeric channels with Kir3.1 and with Kir3.4.  相似文献   

8.
The inward rectifier K+ channel Kir2.1 participates in the maintenance of the cell membrane potential in a variety of cells including neurons and cardiac myocytes. Mutations of KCNJ2 encoding Kir2.1 underlie the Andersen–Tawil syndrome, a rare disorder clinically characterized by periodic paralysis, cardiac arrhythmia and skeletal abnormalities. The maintenance of the cardiac cell membrane potential is decreased in ischaemia, which is known to stimulate the AMP-activated serine/threonine protein kinase (AMPK). This energy-sensing kinase stimulates energy production and limits energy utilization. The present study explored whether AMPK regulates Kir2.1. To this end, cRNA encoding Kir2.1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKβ1 + AMPKγ1), of the constitutively active γR70QAMPK (α1β1γ1(R70Q)), of the kinase dead mutant αK45RAMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. Kir2.1 activity was determined in two-electrode voltage-clamp experiments. Moreover, Kir2.1 protein abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced Kir2.1-mediated currents and Kir2.1 protein abundance in the cell membrane. Expression of wild type Nedd4-2 or of Nedd4-2S795A lacking an AMPK phosphorylation consensus sequence downregulated Kir2.1 currents. The effect of wild type Nedd4-2 but not of Nedd4-2S795A was significantly augmented by additional coexpression of AMPK. In conclusion, AMPK is a potent regulator of Kir2.1. AMPK is at least partially effective through phosphorylation of the ubiquitin ligase Nedd4-2.  相似文献   

9.
This study investigates how changes in the level of cellular cholesterol affect inwardly rectifying K+ channels belonging to a family of strong rectifiers (Kir2). In an earlier study we showed that an increase in cellular cholesterol suppresses endogenous K+ current in vascular endothelial cells, presumably due to effects on underlying Kir2.1 channels. Here we show that, indeed, cholesterol increase strongly suppressed whole-cell Kir2.1 current when the channels were expressed in a null cell line. However, cholesterol level had no effect on the unitary conductance and only little effect on the open probability of the channels. Moreover, no cholesterol effect was observed either on the total level of Kir2.1 protein or on its surface expression. We suggest, therefore, that cholesterol modulates not the total number of Kir2.1 channels in the plasma membrane but rather the transition of the channels between active and silent states. Comparing the effects of cholesterol on members of the Kir2.x family shows that Kir2.1 and Kir2.2 have similar high sensitivity to cholesterol, Kir2.3 is much less sensitive, and Kir2.4 has an intermediate sensitivity. Finally, we show that Kir2.x channels partition virtually exclusively into Triton-insoluble membrane fractions indicating that the channels are targeted into cholesterol-rich lipid rafts.  相似文献   

10.
Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a genetic disorder characterized by excess secretion of insulin and hypoglycemia. In most patients, the disease is caused by mutations in sulfonylurea receptor-1 (SUR1), which, in association with Kir6.2, constitutes the functional ATP-sensitive potassium (K(ATP)) channel of the pancreatic beta-cell. Previous studies reported that coexpression of the PHHI mutant R1394H-SUR1 with Kir6.2 in COS cells produces no functional channels. To investigate if the loss of function could be due to impaired trafficking of mutant channels to the cell membrane, we have cotransfected wild-type and mutant SUR1 subunits with Kir6.2 into HEK293 cells and examined their cellular localization by immunofluorescent staining. Our results show that unlike the wild-type subunits, which showed fluorescence at the cell surface, the mutant subunits displayed fluorescence in punctate structures. Co-immunostaining with antibodies against organelle-specific marker proteins identified these structures as the trans-Golgi network. Limited localization in clathrin-positive, but transferrin receptor-negative vesicles was also observed. The post-endoplasmic reticulum localization suggests that the mutation does not impair the folding and assembly of the channels so as to cause its retention by the endoplasmic reticulum. Diazoxide, a K(ATP) channel opener drug that is used in the treatment of PHHI, restored the surface expression in a manner that could be prevented by the channel blocker glibenclamide. When expressed in Xenopus oocytes, R1394H-SUR1 formed functional channels with Kir6.2, indicating that the primary consequence of the mutation is impairment of trafficking rather than function. Thus, our data uncover a novel mechanism underlying the therapeutic action of diazoxide in the treatment of PHHI, i.e. its ability to recruit channels to the membrane. Furthermore, this is the first report to describe a trafficking disorder effecting retention of mutant proteins in the trans-Golgi network.  相似文献   

11.
Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na+]i (e.g. during ischemia). An intracellular Na+ coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na+ coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na+ sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 m NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mm. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na+. In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mm niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mm. Thus, relative to fenamates, intracellular Na+ is a poor activator of Slo2.1.  相似文献   

12.
Polyamines as gating molecules of inward-rectifier K+ channels.   总被引:7,自引:0,他引:7  
Inward-rectifier potassium (Kir) channels comprise a superfamily of potassium (K+) channels with unique structural and functional properties. Expressed in virtually all types of cells they are responsible for setting the resting membrane potential, controlling the excitation threshold and secreting K+ ions. All Kir channels present an inwardly rectifying current-voltage relation, meaning that at any given driving force the inward flow of K+ ions exceeds the outward flow for the opposite driving force. This inward-rectification is due to a voltage-dependent block of the channel pore by intracellular polyamines and magnesium. The present molecular-biophysical understanding of inward-rectification and its physiological consequences is the topic of this review. In addition to polyamines, Kir channels are gated by intracellular protons, G-proteins, ATP and phospholipids depending on the respective Kir subfamily as detailed in the following review articles.  相似文献   

13.
We used immunohistochemistry to identify the localization of the inwardly rectifying potassium channels K(ir) 2.1 and its mutant K(ir) 2.1 M84K, and P2X(2) receptors heterologously expressed in Xenopus oocytes, opossum kidney (OK) cells and NG108-15 cells. K(ir) 2.1 wild-type channels were unevenly distributed over the surface of the oocytes and the density was higher at the vegetal pole than at the animal pole. In OK cells the protein was detected at the basolateral membrane, and in NG108-15 cells the protein was found in the soma of the cells and in long thick outgrowing neurites. In contrast, mutant K(ir) 2.1 M84K channels were evenly distributed over the membrane of the oocytes, whereas in OK cells the protein was only detected at the tips of the brush border. In NG108-15 cells the protein was found in the soma of the cells and in all growing neurites. The density of P2X(2) was higher at the animal pole of the oocytes and was restricted to the tips of the brush border in OK cells. In NG108-15 cells the protein was restricted to thinner outgrowing structures and the soma of the cells. We conclude that the exchange of a single amino acid residue in the N-terminus of K(ir) 2.1 changes the distribution pattern in all of the cell types studied. Furthermore, we were able to show that another ion channel sharing the same topology with inwardly rectifying potassium channels showed a different distribution pattern in these cell types.  相似文献   

14.
N E Shvinka  G Caffier 《Biofizika》1983,28(6):1006-1009
Conductance of single fibres from m. ileofibularis of Rana esculenta was studied in isotonic K2SO4 solution under constant current conditions using the double sucrose gap method. It was found that Tl+ (at concentrations 5, 10, and 20 mM) blocked K+ currents in the gramicidin channel. The decrease of K+ conductance caused by Tl+ was associated with the changes of the membrane potential. Both the decrease of K+ conductance and value of permeability ratio (PTl/PK) found from the membrane potential changes depended on Tl+ concentration in the bathing solution. No effect of Tl+ on the potassium channels was registered in the absence of gramicidin channels. The Tl+ block described here proves the existence of Tl+ ion binding within gramicidin channels of the muscle membrane and interactions among ions in the channels.  相似文献   

15.
Ion channel conductance can be influenced by electrostatic effects originating from fixed "surface" charges that are remote from the selectivity filter. To explore whether surface charges contribute to the conductance properties of Kir2.1 channels, unitary conductance was measured in cell-attached recordings of Chinese hamster ovary (CHO) cells transfected with Kir2.1 channels over a range of K+ activities (4.6-293.5 mM) using single-channel measurements as well as nonstationary fluctuation analysis for low K+ activities. K+ ion concentrations were shown to equilibrate across the cell membrane in our studies using the voltage-sensitive dye DiBAC4(5). The dependence of gamma on the K+ activity (a(K)) was fit well by a modified Langmuir binding isotherm, with a nonzero intercept as a(K) approaches 0 mM, suggesting electrostatic surface charge effects. Following the addition of 100 mM N-methyl-D-glucamine (NMG+), a nonpermeant, nonblocking cation or following pretreatment with 50 mM trimethyloxonium (TMO), a carboxylic acid esterifying agent, the gamma-a(K) relationship did not show nonzero intercepts, suggesting the presence of surface charges formed by glutamate or aspartate residues. Consistent with surface charges in Kir2.1 channels, the rates of current decay induced by Ba2+ block were slowed with the addition of NMG or TMO. Using a molecular model of Kir2.1 channels, three candidate negatively charged residues were identified near the extracellular mouth of the pore and mutated to cysteine (E125C, D152C, and E153C). E153C channels, but not E125C or D152C channels, showed hyperbolic gamma-a(K) relationships going through the origin. Moreover, the addition of MTSES to restore the negative charges in E53C channels reestablished wild-type conductance properties. Our results demonstrate that E153 contributes to the conductance properties of Kir2.1 channels by acting as a surface charge.  相似文献   

16.
Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 expressed in Xenopus oocytes. When tyrosine kinases were active, flash decaging led both to decreased K(+) currents and also to substantial (15-26%) decreases in capacitance, implying net membrane endocytosis. A dominant negative dynamin mutant completely blocked the decaging-induced endocytosis and partially blocked the decaging-induced K(+) channel inhibition. Thus, decaging of a single tyrosine residue in a single species of membrane protein leads to massive clathrin-mediated endocytosis; in fact, membrane area equivalent to many clathrin-coated vesicles is withdrawn from the oocyte surface for each Kir2.1 channel inhibited. Oocyte membrane proteins were also labeled with the thiol-reactive fluorophore tetramethylrhodamine-5-maleimide, and manipulations that decreased capacitance also decreased surface membrane fluorescence, confirming the net endocytosis. In single-channel studies, tyrosine kinase activation decreased the membrane density of active Kir2.1 channels per patch but did not change channel conductance or open probability, in agreement with the hypothesis that tyrosine phosphorylation results in endocytosis of Kir2.1 channels. Despite the Kir2.1 inhibition and endocytosis stimulated by tyrosine kinase activation, neither Western blotting nor (32)P labeling produced evidence for direct tyrosine phosphorylation of Kir2.1. Therefore, it is likely that tyrosine phosphorylation affects Kir2.1 function indirectly, via interactions between clathrin adaptor proteins and a tyrosine-based sorting motif on Kir2.1 that is revealed by decaging the tyrosine side chain. These interactions inhibit a fraction of the Kir2.1 channels, possibly via direct occlusion of the conduction pathway, and also lead to endocytosis, which further decreases Kir2.1 currents. These data establish that side chain decaging can provide valuable time-resolved data about intracellular signaling systems.  相似文献   

17.
Cho HC  Tsushima RG  Nguyen TT  Guy HR  Backx PH 《Biochemistry》2000,39(16):4649-4657
Inwardly rectifying potassium channels are important in cellular repolarization of many excitable tissues. Amino acid sequence alignment of different mammalian inward rectifier K(+) channels revealed two absolutely conserved cysteine residues in the putative extracellular face, suggesting a possible disulfide bond. Replacement of these cysteine residues in the Kir2.1 channel (i.e., C122 and C154) with either alanine or serine abolished current in Xenopus laevis oocytes although Western blotting established that the channels were fully expressed. The digestion pattern of channels treated with V8 protease combined with Western blotting under reducing and nonreducing conditions confirmed intrasubunit cross-linking of C122 and C154. Whole-cell and single channel current recordings of oocytes expressing tandem tetrameric constructs with one or two of the mutant subunits suggested that insertion of one mutant subunit is sufficient to eliminate channel function. Coexpression studies confirmed that the cysteine mutant channels eliminate wild-type Kir2.1 currents in a dominant-negative manner. Despite these results, sulfhydryl reduction did not alter the functional properties of Kir2.1 currents. Molecular modeling of Kir2.1 with the two cysteines cross-linked predicted that the extracellular loop between the first transmembrane domain and the pore helix contains a beta-hairpin structure. Distinct from the KcsA structure, the disulfide bond together with the beta-hairpin structure is expected to constrain and stabilize the P-loop and selectivity filter. Taken together, these results suggest that intramolecular disulfide bond exists between C122 and C154 of Kir2.1 channel and this cross-link might be required for proper channel folding.  相似文献   

18.
Delayed rectifier potassium channels were expressed in the membrane of Xenopus oocytes by injection of rat brain DRK1 (Kv2.1) cRNA, and currents were measured in cell-attached and inside-out patch configurations. In intact cells the current-voltage relationship displayed inward going rectification at potentials > +100 mV. Rectification was abolished by excision of membrane patches into solutions containing no Mg2+ or Na+ ions, but was restored by introducing Mg2+ or Na+ ions into the bath solution. At +50 mV, half- maximum blocking concentrations for Mg2+ and Na+ were 4.8 +/- 2.5 mM (n = 6) and 26 +/- 4 mM (n = 3) respectively. Increasing extracellular potassium concentration reduced the degree of rectification of intact cells. It is concluded that inward going rectification resulting from voltage-dependent block by internal cations can be observed with normally outwardly rectifying DRK1 channels.  相似文献   

19.
20.
Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BK(Ca)) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case for the ATP-sensitive K+ (K(ATP)) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl- (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present in the T tubule membrane, whereas NKCC1 cotransporters were present in the sarcolemmal membrane. For muscles incubated in a buffer containing pinacidil, NS1619, Ba2+, or bumetanide, there was a faster reduction in peak force (P < 0.05). Furthermore, bumetanide incubation reduced the peak force at the onset of electrical stimulation (P < 0.05). Thus the effects on muscle force indicate that these drugs can affect K+-transporting proteins and thereby influence K+ accumulation, especially in the T tubules, suggesting that K(ATP) and BK(Ca) channels are responsible for K+ release and decrease in force during repeated muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号