首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The dynamics of vegetation regeneration after burning were examined in three dry sclerophyll communities near Canberra, in south-eastern Australia. Changes in seedling and regrowth populations were followed in permanent quadrats during the first two years after burning, compared with both the preburn vegetation and population changes over the same period in adjacent, unburnt plots. All species represented either by living plants in the tree and shrub strata and/or by seed in the soil and litter prior to burning regenerated during the first year after the fire treatments. No new species invaded the areas after burning. Species varied in their regenerative strategy and recovered after the fires either by germination of seed residual in the soil and ash or released from trees after burning, by regrowth from surviving vegetative organs, or by a combination of germination and regrowth. Both seedling input and the vegetative recovery of populations were higher during the first than second year after burning. The vegetative multiplication and seed gertnination of many species were stimulated by fire. It was concluded that the regeneration of the communities studied, as well as the post-fire recovery of numerous different communities reported in the literature, closely resembled an initial floristic composition model. It is considered that the process of vegetation redevelopment after a disturbance (i.e. secondary succession) will be influenced greatly by the species composition at the time of disturbance, and by the type of disturbing agent. A single model would not be expected to adequately describe secondary succession following disturbance by agents imposing different stress conditions on a community.  相似文献   

2.
The aim of this study is to compare the recovery dynamics in three shrub communities subjected to experimental burning and cutting, and situated on an altitudinal gradient. Climatic features are different in each area, but all had the common characteristic of very homogeneous vegetation cover before the disturbances, with only one shrub species clearly dominant, a different taxon in each area, and with different regeneration strategies. The first area was a heathland dominated by Calluna vulgaris, situated at an altitude of 1600 m, with a continental climate (mean annual precipitation 1320 mm). The second area was a heathland dominated by Erica australis, located at an altitude of 1000 m (mean annual precipitation 840 mm). The third area was a Cistus ladanifer shrubland, located at 900 m altitude, with a Mediterranean climate similar to that of the previous area, but with lower mean annual precipitation (470 mm). Erica australis recovers by vegetative resprouting, but Cistus ladanifer is an obligate seeder, as is Calluna vulgaris in these areas. Each experimental disturbance was carried out over 100 m2 in each area. Post-fire recovery is faster in Cistus ladanifer: 2 years after burning there was 40% cover vs. less than 20% in the other two species. However, recovery after cutting was similar for Cistus ladanifer and Erica australis. Calluna vulgaris recovers very slowly, with cover values below 20% even 10 years after both disturbances. Cover of dominant shrub species is negatively correlated with cover of herbaceous species. So different recovery of dominant species lead a different community dynamic in each area.  相似文献   

3.
Questions: Does the diversity of heathland vegetation change when subjected to experimental disturbances such as cutting and nitrogen fertilization? Do changes in the vegetation structure negatively affect the regeneration of the dominant species Calluna vulgaris? Is cutting an alternative method of conserving the diversity and maintaining the structure of heathlands in the Cantabrian Mountains? Location: Calluna vulgaris heathlands on the southern slopes of the Cantabrian Mountain range, NW Spain. Methods: A total of 60 plots were treated with different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (56 kg‐N.ha?1.yr?1). The changes in the cover values of the species present were monitored over a five year study period. The cover values were used to calculate abundance and species richness. Results: Fertilizing with nitrogen allows biodiversity to increase over time. However, the greatest biodiversity is associated with the cutting plus fertilization treatment, since cutting allows gaps to be opened that are easily colonized by pioneer annual species, while fertilization mainly favours an increase in the mean number of perennial herbs (graminoids and forbs). Increased perennial herb richness also corresponds to a rise in their cover values. The recovery of the dominant woody species in these communities, Calluna vulgaris, is not impeded by the increase in perennial herbs species' cover values. Conclusions: In the Calluna vulgaris heathlands studied, cutting plus fertilization allowed an increase in biodiversity over time. No displacement of the dominant woody species, Calluna vulgaris, is observed due to the presence of the perennial herbs. Cutting patches of heathland is recommended as a mechanism for maintaining high vegetation diversity, when grazing is not possible.  相似文献   

4.
Vera  M. L. 《Plant Ecology》1997,133(1):101-106
The effects of altitude and seed size on germination and seedling survival were studied in Calluna vulgaris, Erica cinerea and Erica vagans. Experiments were carried out in the laboratory over a one year period. Seeds collected from heathlands of different altitudes were divided in two size classes. They were sowed on moist filter paper inside Petri dishes which were placed in chambers at 20 °C and a photoperiod of 12 h light/12 h darkeness. The seeds of Calluna vulgaris were the first to begin germination and had the highest rate and percentage of germination. The germination of Erica vagans was moderate, while seeds of Erica cinerea germinated later and the germination was very low. Seeds of Calluna vulgaris and E. cinerea collected at the highest altitudes had the highest germination percentages. Seed size in Calluna vulgaris and E. cinerea did not affect germination. However, large seeds of Erica vagans had higher germination rates and percentages than small seeds. The large seed size of Calluna vulgaris contributes to a better survival and growth of its seedlings.  相似文献   

5.
In the face of ongoing atmospheric nutrient loads the employment of management measures to remove nutrients from heathland ecosystems has increased in importance. The present study is the first to analyse whether Calluna vulgaris is a suitable bio-monitor of management-mediated nutrient pools in heathland ecosystems. If Calluna vulgaris proves to be an appropriate indicator, its bio-indicative usage may prove to be a helpful tool for an assessment of management success in heathland ecosystems. In the Lüneburger Heide nature reserve (NW Germany) we analysed the impacts of grazing, mowing, prescribed burning, choppering and sod-cutting on the nutritional status of Calluna vulgaris by measuring nutrient contents (N, P, Ca, Mg, K) of current year's shoots 1 and 5 years after application of management measures. Results were related to management-induced nutrient flows and nutrient pools at the focal heath sites. Our results indicate that the less the physical environment of a heath site was affected by management measures the better the nutrient contents of current year's shoots of Calluna vulgaris mirrored changes in nutrient pools. For low-intensity measures (i.e. grazing, mowing, prescribed burning), shoot nutrient contents were a suitable indicator for changes in nutrient pools, particularly for nutrients with conservative cycles such as P. At grazed and mown sites high output rates of P caused by these measures were well reflected by decreased shoot P content. At burned sites, Calluna vulgaris proved to be a good indicator of changes in nutrient pools of the organic layer, mainly attributable to the deposition of nutrients with ash. In contrast, at sites subjected to high-intensity measures, shoot nutrient contents did not reflect management-mediated shifts in nutrient pools, despite the high nutrient losses caused by choppering and sod-cutting. At these sites, shoot nutrient contents mirrored only the effects of altered mineralisation rates attributable to changes in the physical environment following high-intensity measures. As plant growth and competition in heathlands is considered to be controlled by N or P, shoot N:P ratios are recommended as a tool to indicate whether plant growth tends to be limited by N, by P or by N and P. This, in turn, allows for an assessment of long-term effects of both atmospheric nutrient loads and management-mediated shifts in N and P pools at a focal heath site.  相似文献   

6.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

7.
Regeneration of Calluna vulgaris in heathlands occurs from both seed and layering, although the relative importance of these two strategies appears to vary. A population model based on transitions between growth phases has been devised and parameter values obtained from published and original work. The effects of differing amounts of seed and vegetative regeneration on the population changes were then tested.The model predicts that a population with a relatively high occurrence of layering will tend towards a steady state, with little temporal variation in population density and cover. Conversely, low layering capacity increases temporal variation with little effect on mean cover. Increased seed regeneration on the other hand, increases both the amplitude of temporal variation in population density, and the frequency of cycles, whereas low seed regeneration results in a stable age distribution at less than 100% cover.  相似文献   

8.
Conifer regeneration failure in the presence of dense ericaceous cover resulting from the removal of canopy trees by forest harvesting observed in boreal and temperate forest has been attributed to allelopathy, competition, and soil nutrient imbalance. Ecosystem-level alleopathic effect has been argued as a cause for conifer regeneration failure by citing examples from a species-poor boreal forest in northern Sweden with ground vegetation dominated by crowberry (Empetrum hermaphroditum, Ericales) and New Zealand dairy pastures invaded by nodding or musk thistle (Carduus nutans). This article aims to explain the phenomenon of vegetation shift from conifer forest to ericaceous heath by extending the argument of ecosystem-level impact of ericaceous plants and linking the disturbance-mediated regeneration strategies of the dominant conifer species and the understory ericaceous species with the quality of seedbed substrate that influence the direction of secondary succession. It has been argued that fire severity plays a pivotal role in controlling seedbed quality and the regeneration mechanisms of conifers, which in turn determines the direction of post-disturbance succession. The post-fire-dominated ericaceous plants and their habitat-modifying effects have been explained from the point of view of keystone species concept and their role as ecosystem engineers. In the absence of high severity natural fires the canopy keystone species (conifer) fails to regenerate successfully mainly due to limitation of favorable seedbed. On the other hand, the understory ericaceous plants regenerate vigorously by vegetative methods from the belowground components that survived the fire. Forest harvesting by clearcutting or selective cutting also create similar vigorous vegetative regrowth of ericaceous plants, but conifer regeneration suffers from the lack of a suitable seedbed. Thus in the absence of successful conifer regeneration, the vigorously growing understory ericaceous plants become the new keystone species. The new keystone ericaceous species bring about a significant long-term habitat change by rapid accumulation of plyphenol-rich humus. Ericaceous phenolic compounds have been found to inhibit seed germination and seedling growth of conifers. By forming protein-phenol complexes they cause a further reduction of available nitrogen of the already nutrient-stressed habitat. A low pH condition in the presence of phenolic compounds causes the leaching of metallic ions and forms hard iron pans that impair soil water movement. The phenolic allelochemicals of ericaceous humus are also inhibitory to many conifer ectomycorrhizae. On the other hand, ericaceous plants perpetuate in the community by their stress-tolerating strategies as well as their ability to acquire nutrients through ericoid mycorrhizae. Three mechanisms working at the ecosystem level can be suggested as the cause of vegetation shift from forest to ericaceous heath. These are (1) the absence of high severity natural fire and the limitation of suitable conifer seedbed in the presence of thick humus, (2) increased competition resulting from the rapid vegetative regeneration of understory ericaceous plants after forest canopy opening by harvesting or nonsevere fire, and (3) habitat degradation by phenolic allelochemicals of ericaceous plants causing a soil nutrient imbalance and iron pan formation. Thus, a shift in keystone species from conifer to ericaceous plant in the post-disturbance habitat may induce a retrogressive succession due to ecosystem-level engineering effects of the new keystone species. Vegetation management in conifer-ericaceous communities depends on land management objectives. If the objective is to produce timber and other forest products then the control of ericaceous plants and site preparation is necessary after forest harvesting. Ploughing and liming followed by conifer planting and repeated N fertilization has been applied successfully to promote afforestation of Calluna heathlands in Britain. However, such practice has not been proven successful in the reforestation of Kalmia-dominated sites in eastern Canada. If, on the other hand, the land management objective is to maintain heathlands for herbivore production or conservation of cultural landscape, as in the case of certain Calluna-dominated heathland in Western Europe, then moderately hot prescribed burning is useful as a management tool.  相似文献   

9.
In Western Europe, arable lands have been abandoned to increase the area of nature, such as Calluna vulgaris –dominated heathlands. However, the growth conditions, e.g., nutrient availability and lack of a phenolics-rich organic layer, on ex-arable sandy soils differ markedly from those of heathland and will favor fast-growing plant species. Succession toward Calluna -dominated heathland is expected to take decades unless intensive restoration management is applied. Here, we report a possible mechanism to explain the occurrence of Calluna patches (0.7–2.0 m diameter) in a 10-year abandoned agricultural field within a dominant vegetation of grasses and forbs. All roots sampled from the Calluna patches were colonized by ericoid mycorrhizal (ERM) and other endomycorrhizal fungi. Both nitrogen mineralization of soil organic N and potential nitrogen mineralization (arginine ammonification) were much lower in soil under Calluna patches than in the rest of the ex-arable soil, although other soil characteristics did not differ. The nitrogen to phosphorus ratio in Calluna shoots was much greater than that in shoots of grasses and forbs, indicating that the latter were more N limited. The results indicate that the association with ERM fungi is probably providing the host competitive superiority for nitrogen even in a soil with low organic matter content. Our results suggest that the conversion from arable land into heathland may be accomplished by the immediate establishment of Calluna seedlings and ERM inoculum when agricultural activities are stopped. This needs to be tested in controlled experiments.  相似文献   

10.
Summary Natural regeneration of farmland areas following landuse change has the potential to reinstate native vegetation and landscape processes across larger scales than intentional works. However, few examples of large‐scale natural regeneration have been reported from southern Australia. In this study we use historical air photos to document the rate of establishment of natural regeneration in central Victoria following a change from agricultural to rural residential land use. In 2009, regrowth patches occupied 8185 ha, or 12.3% of the cleared landscape in the study region, mostly on relatively low fertility soils. Most of this area (6216 ha) supported Cassinia shrubland, with eucalypts encroaching as patches get older. On average, native vegetation has regenerated over nearly 1800 ha every decade since the mid‐1960s. If this trend continues, regrowth will occupy 20% of infertile soils on private land by 2025. This region now appears to support one of the largest examples of old field succession recorded from south‐eastern Australia. Regrowth patches are likely to provide many conservation benefits, although little information exists on habitat values provided by regrowth shrublands. Since regeneration is on private land, perceptions of whether regrowth is ‘good’ or ‘bad’ will vary according to landholder goals, as will future management of regrowth patches. Consequently, considerable ecological and social research is required to understand the ecosystem services and disservices which regrowth provides to both landholders and biota.  相似文献   

11.
Millennia of human land-use have resulted in the widespread occurrence of what have been coined ‘domesticated ecosystems’. The anthropogenic imprints on diversity, composition, structure and functioning of such systems are well documented. However, evolutionary consequences of human activities in these ecosystems are enigmatic. Calluna vulgaris (L.) is a keystone species of coastal heathlands in northwest Europe, an ancient semi-natural landscape of considerable conservation interest. Like many species from naturally fire-prone ecosystems, Calluna shows smoke-adapted germination, but it is unclear whether this trait arose prior to the development of these semi-natural landscapes or is an evolutionary response to the anthropogenic fire regime. We show that smoke-induced germination in Calluna is found in populations from traditionally burnt coastal heathlands but is lacking in naturally occurring populations from other habitats with infrequent natural fires. Our study thus demonstrates evolutionary imprints of human land-use in semi-natural ecosystems. Evolutionary consequences of historic anthropogenic impacts on wildlife have been understudied, but understanding these consequences is necessary for informed conservation and ecosystem management.  相似文献   

12.
湿地土壤种子库与地上植被相似性关系研究评述   总被引:3,自引:0,他引:3  
刘庆艳  姜明  吕宪国  王国栋 《生态学报》2014,34(24):7465-7474
土壤种子库与地上植被的关系是土壤种子库研究的重要组成部分。当前,湿地生态系统面临严重威胁,研究湿地土壤种子库和地上植被关系既可以加强对土壤种子库和植物群落特征的认识,又可以为湿地保护与管理提供理论指导。检索了科学引文索引扩展版(SCIE)数据库中收录的1900—2012年间研究湿地土壤种子库与地上植被关系的文献,通过分析土壤种子库与地上植被的Srensen相似性系数,结果发现:不同湿地类型的土壤种子库和地上植被的相似性存在显著差异,河流湿地中两者的相似性最小;不同植被类型中土壤种子库与地上植被的相似性差异显著:草本群落的相似性大于乔木群落;不同气候带的湿地中两者的相似性也存在显著差异,其中亚热带地区相似性最小。总结了湿地种子库与地上植被相似性关系的时空变化特征。二者的相似性通常随着植物群落的演替而减小,在空间上也随着环境梯度而变化。分析了两者关系的影响因素,如种子传播、环境条件和繁殖策略等。对研究中存在的问题及发展方向提出建议。  相似文献   

13.
Field responses to various burning and grazing treatments in three sites on the Southern Tablelands were measured. Grazing by native mammals was unrestricted and continuous. Burning occurred once from fires of low intensity. Records of mortality, height growth and in some cases, seed production showed biologically significant effects of the treatments imposed on small plots. Dillwynia retorta plants were susceptible to a single fire but the species persisted through seedling germination. Other species showed vegetative survival to various extents from the fire. The burning–grazing combination was particularly potent in affecting survival, regeneration and growth of all species. Supplementary evidence of species’ responses were gathered from the treatment of selected individuals in the field and laboratory. Some of the implications of these results and in particular the practice of controlled burning are discussed in relation to the management of reserves set aside for flora and fauna conservation.  相似文献   

14.
The European coastal heathlands are important habitats for international conservation. Today, these low-intensity farming systems are threatened by the cessation of traditional management regimes, such as grazing and prescribed burning. In natural systems, the effects of fire on germination responses are often explained by adaptation to fire over extended periods of time. However, Northern heathlands are semi-natural systems with only a limited fire history. We investigated whether and how the keystone species in this system, Calluna vulgaris, responded to prescribed burning, based on previous findings where Calluna germinable seed-bank densities showed a pronounced peak right after fire. Our main findings were (i) an ecophysiological response to smoke; (ii) a potential explanation for this pattern, revealed by a seed-bank experiment where we managed to re-create the germination pattern experimentally by using an aqueous plant-derived smoke solution; and (iii) a history of anthropogenic use of fire and the development of heathlands in the region documented through palaeoecological investigations.  相似文献   

15.
Experimental fields were established at three sites on different soil types in Dutch heathlands, where grass species have become dominant, in order to find methods for re-establishment of an ericoid dwarf-shrub heath. Treatments included mowing, mowing and cutting for hay, ploughing, milling, sod cutting and burning.Re-establishment of ericoid dwarf shrubs was only observed after creation of gaps or patches of open soil. The results after nine years for two of the sites and six years for the other site indicate that sod cutting is the most suitable method provided that the mineral top soil is not removed or disturbed. More profound removal of the sod including mineral soil causes a delay in re-establishment of ericoid dwarf shrubs and an increase of grasses.Factors that may explain different responses to gap creation including availability of seeds, soil moisture, soil fertility and plant survival strategies are briefly discussed.Abbreviations Calluna = Calluna vulgaris - Deschampsia = Deschampsia flexuosa - Erica = Erica tetralix - Molinia = Molinia caerulea - Sarothammus = Sarothammus scoparius  相似文献   

16.
Postfire vegetation regeneration in many fire-prone ecosystems is soil seed bank dependent. Although vegetation and seed bank may be spatially structured, the role of prefire vegetation patterns and fire in determining postfire vegetation patterns is poorly known. Here, we investigated the spatial patterning of species abundance and richness in the vegetation and seed bank of a Mediterranean encroached dehesa in Central Spain. The seed bank was studied with and without a heat shock simulating a spatially homogeneous fire. Semivariograms and cross-semivariograms showed that species richness in the vegetation was aggregated in patches, mainly of herbs, with highest values corresponding to high herb cover and low tree cover. Species richness in the seed bank was also structured in patches, but the spatial pattern was weak. Seedling density of germinates in the seed bank also showed weak spatial pattern. Heating increased overall germination and species richness, and the intensity of the spatial pattern of species richness, particularly of herbaceous species. However, seed bank density patterns disappeared after heat shock because of increased germination of shrubs without spatial pattern. Our results document that the spatial structure of plant richness in the vegetation may persist after fire due to the spatial patterns of herbaceous species in the seed bank, and that postfire species richness patterns can arise independently of fire intensity patterns. However, the spatial structure of the vegetation after fire can be altered by the feedback between shrub encroachment and an eventual fire because of the ubiquitous germination of shrubs.  相似文献   

17.
During the last decades, the perennial tussock grass Molinia caerulea has shown an increased abundance in European heathlands, most likely as a result of increased nitrogen deposition and altered management schemes. Because of its deciduous nature, Molinia produces large amounts of litter each year, which may affect the intensity and frequency of accidental fires in heathlands. These fires may influence plant population dynamics and heathland community organization through their effects on plant vital attributes and competitive interactions. In this study, fire-induced changes in competitive ability and invasiveness of Molinia through changes in biomass production, seed set and seed germination under both natural and laboratory conditions were investigated. We found that fire significantly increased aboveground biomass, seed set and germination of Molinia. Seed set was twice as high in burned compared to unburned heathland. Two years after fire, seedling densities in natural conditions were on average six times higher in burned than in unburned heathland, which resulted in increased abundance of Molinia after burning. The seed germination experiment indicated that seeds harvested from plants in burned heathland showed higher germination rates than those from unburned heathland. Hence, our results clearly demonstrate increased invasive spread of Molinia after large and intense fires. Active management guidelines are required to prevent further encroachment of Molinia and to lower the probability of large fires altering the heathland community in the future.  相似文献   

18.
Griffith  Alan B.  Forseth  Irwin N. 《Plant Ecology》2003,167(1):117-125
Aeschynomene virginica is a rare annual plant found in freshwater tidal wetlands of the eastern United States. We hypothesized that standing vegetation and water inundation were two important environmental factors in its population dynamics. To test these hypotheses, we sowed seeds into plots with undisturbed vegetation or plots with all aboveground vegetation removed in 1998 and 1999. Presence/absence of seedlings was noted and seedling survival to reproduction, final size, and seed set were measured throughout both growing seasons. Seedling establishment from germination to the first true leaf stage increased with decreasing water depth. Vegetation removal plots had greater seedling establishment, higher seedling survival, and higher seed set per plant than non-removal plots. In a greenhouse study designed to test the effects of water level on seed germination and seedling establishment, no seedlings established in submerged soils, and seed germination and seedling establishment were lower in waterlogged soil than in wet soil. Physical stress associated with deeper water likely limits the distribution of A. virginica to higher elevations, where seeds that colonize patches with low vegetative cover are more likely to produce reproductive adults that produce more seeds relative to patches with established vegetation. A. virginica appears to be a fugitive species specializing on open habitat patches in tidal wetlands. This species may be dependent on disturbances for population establishment and maintenance.  相似文献   

19.
《Acta Oecologica》2006,29(3):299-305
During the last decades, the perennial tussock grass Molinia caerulea has shown an increased abundance in European heathlands, most likely as a result of increased nitrogen deposition and altered management schemes. Because of its deciduous nature, Molinia produces large amounts of litter each year, which may affect the intensity and frequency of accidental fires in heathlands. These fires may influence plant population dynamics and heathland community organization through their effects on plant vital attributes and competitive interactions. In this study, fire-induced changes in competitive ability and invasiveness of Molinia through changes in biomass production, seed set and seed germination under both natural and laboratory conditions were investigated. We found that fire significantly increased aboveground biomass, seed set and germination of Molinia. Seed set was twice as high in burned compared to unburned heathland. Two years after fire, seedling densities in natural conditions were on average six times higher in burned than in unburned heathland, which resulted in increased abundance of Molinia after burning. The seed germination experiment indicated that seeds harvested from plants in burned heathland showed higher germination rates than those from unburned heathland. Hence, our results clearly demonstrate increased invasive spread of Molinia after large and intense fires. Active management guidelines are required to prevent further encroachment of Molinia and to lower the probability of large fires altering the heathland community in the future.  相似文献   

20.
Heather and heathlands   总被引:1,自引:0,他引:1  
GIMINGHAM, C. H., 1989. Heather and heathlands. Studies of the biology and ecology of heather (Calluna vulgaris (L.) Hull) reveal a remarkable combination of characteristics, accounting for its success as a heathland dominant and its ability to persist under traditional forms of use and management. New work on the life history and physiology of the species is helping to explain recent changes in heathlands, and to develop appropriate methods of conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号