首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structures of the 64M-2 antibody Fab fragment complexed with DNA photoproducts of dT(6-4)T and dTT(6-4)TT, and of the 64M-3 Fab fragment complexed with dT(6-4)T were determined. The 5'-thymine base of the bound dT(6-4)T ligand is in a half-chair conformation, and its base plane is nearly perpendicular to the planar 3'-pyrimidone base. The 64M-2 and 64M-3 Fabs have a common structure suitable for accommodating the dT(6-4)T ligand. In each of the antigen binding sites of the 64M-2 and 64M-3 Fabs, basic residues of His 35H and Arg 95H are located at the bottom of the binding pocket, and are hydrogen-bonded to the base moieties of dT(6-4)T. Two water molecules are involved in the interactions that intervene between the base moieties and the binding site. Aromatic residues of Trp 33H and Tyr 100iH form a side-wall of the pocket and are in van der Waals interactions with the base moieties. The Trp 33H side-chain is placed in parallel to the 3'-pyrimidone base, and the Tyr 100iH side-chain is nearly perpendicular to the 5'-thymine base. His 27dL, Tyr 32L, Leu 93L, and Ser 58H forming another side-wall are located in the vicinity of the sugar-phosphate backbone. In the 64M-2 Fab complex with dTT(6-4)TT, 5'- and 3'-side phosphate groups are also involved in interaction with Fab residues.  相似文献   

2.
The DNA base sequence specificity of the 64M-1 monoclonal antibody, which recognizes ultraviolet (UV)-induced (6-4)photoproducts, was characterized. The 64M-1 antibody strongly bound to UV-poly(dU) as well as to UV-poly(dT), and weakly to UV-poly(dC), UV-poly(me5dC) and UV-poly(rU). A competitive inhibition assay using UV-oligo(dT)8, UV-oligo(dTdC)4, UV-oligo(dC)8, UV-PvuI linker (GCGATCGC) and UV-PvuII linker (GCAGCTGC) indicated that the main (6-4)photoproducts detected by the 64M-1 antibody in UV-irradiated DNA are TT(6-4)photoproducts and TC(6-4)photoproducts. Comparison between dTpdT(6-4)photoproduct and dTpdC(6-4)photoproduct showed that the affinity of the 64M-1 antibody for dTpdT(6-4)photoproduct was about 5 times higher than that for dTpdC(6-4)photoproduct. The antibody also binds to isolated TT(6-4)photoproducts.  相似文献   

3.
DNA photoproducts with (6-4) pyrimidine-pyrimidone adducts formed by ultraviolet radiation are implicated in mutagenesis and cancer, particularly skin cancer. The crystal structure of the Fab fragment of the murine 64M-2 antibody specific to DNA T(6-4)T photoproducts is determined as a complex with dT(6-4)T, a (6-4) pyrimidine-pyrimidone photodimer of dTpT, at 2.4 A resolution to a crystallographic R-factor of 0.199 and an R(free) value of 0.279. The 64M-2 Fab molecule is in an extended arrangement with an elbow angle of 174 degrees, and its five complementarity-determining regions, except L2, are involved in the ligand binding. The bound dT(6-4)T ligand adopting a ring structure with (6-4) linked 5' thymine-3' pyrimidone bases is fully accommodated in an antigen-binding pocket of about 15 Ax10 A. The 5'-thymine and 3'-pyrimidone bases are in half-chair and planar conformations, respectively, and are nearly perpendicular to each other. The 5'-thymine base is hydrogen-bonded to Arg95H and Ser96H, and is in van der Waals contact with Tyr100iH. The 3'-pyrimidone base is hydrogen-bonded to His35H, and is in contact with Trp33H. Three water molecules are located at the interface between the bases and the Fab residues. Hydrogen bonds involving these water molecules also contribute to Fab recognition of the dT(6-4)T bases. The sugar-phosphate backbone connecting the bases is surrounded by residues His27dL, Tyr32L, Ser92L, Trp33H, and Ser58H, but is not hydrogen-bonded to these residues.  相似文献   

4.
We obtained a monoclonal antibody (TDM-1) binding to 313-nm UV-irradiated DNA in the presence of acetophenone. The binding of TDM-1 to 254-nm UV-irradiated DNA was not reduced with the subsequent irradiation of 313-nm UV. Furthermore, the treatment of UV-irradiated DNA with photolyase from E. coli and visible light exposure reduced both the antibody binding and the amount of thymine dimers in the DNA. A competitive inhibition assay revealed that the binding of TDM-1 to UV-irradiated DNA was inhibited with photolyase, but not with 64M-1 antibody specific for (6-4)photoproducts. These results suggest that TDM-1 antibody recognizes cyclobutane-type thymine dimers in DNA. Using TDM-1 and 64M-1 antibodies, we differentially measured each type of damage in DNA extracted from UV-irradiated mammalian cells. Repair experiments confirm that thymine dimers are excised from UV-irradiated cellular DNA more slowly than (6-4)photoproducts, and that the excision rates of thymine dimers and (6-4)photoproducts are lower in mouse NIH3T3 cells than in human cells.  相似文献   

5.
The antigen binding site of monoclonal antibody 64M5, which possesses a high degree of affinity for DNA containing pyrimidine (6-4) pyrimidone photoproducts, were investigated by use of stable-isotope-assisted NMR spectroscopy. A variety of 64M5 Fab fragments specifically labeled with 13C and 15N at backbone amide groups were prepared. Extensive assignments of amide resonances originating from the variable region of 64M5 were made by using 2D-HN(CO) measurements along with recombination of the heavy and light chains of 64M5. On the basis of chemical shift changes of the amide resonances caused upon addition of d(T[6-4]T) and d(GTAT[6-4]TATG), the binding sites of 64M5 Fab for the (6-4) photodimer and for the oligodeoxynucleotides flanking it were identified. It was revealed that the L1 and L3 segments, which are responsible for the binding to (6-4) photodimer, exhibit conformational multiplicities in the absence of antigens, and take different conformations between the d(T[6-4]T) and d(GTAT[6-4]TATG)-bound forms. On the basis of spectral comparison with another Fab fragment with a similarity in the amino acid sequence of the VL domain of 64M5, we suggest that the conformational multiplicities observed in the present study is caused by a substitution of an amino acid residue at the position of a key residue in L3 canonical structure, which leads to a preferable effect on the antigen binding, and by a specific combination of L1 and L3 canonical structures.  相似文献   

6.
We obtained a monoclonal antibody directed against UV-induced DNA damage. Analysis of the antigenic determinant in UV-irradiated DNA recognized by this antibody, 64M-1, revealed that it bound UV-irradiated oligo- or poly-nucleotides containing thymine-thymine or thymine-cytosine sequences. The antibody failed to bind DNA irradiated with 313 nm UV in the presence of acetophenone, which contained predominantly thymine dimers as DNA damage. The binding activity of this antibody to 254-nm UV-irradiated DNA decreased with 313-nm UV irradiation, and the decrease of this binding activity correlated with the decrease of fluorescence corresponding to (6-4) photoproducts. These results suggest that the antigenic determinant recognized by this monoclonal antibody is a (6-4) photoproduct. Using autoradiography with 3H-antibody, we could detect the formation of the (6-4) photoproduct in individual human cells irradiated with 254-nm UV doses as low as 20 J/m2.  相似文献   

7.
H Kamiya  S Iwai    H Kasai 《Nucleic acids research》1998,26(11):2611-2617
Two major ultraviolet-induced photolesions of TpT, a (6-4) photoproduct [T(6-4)T] and a cis-syn cyclobutane TT dimer (T=T), were incorporated into a predetermined site of one of the leading and lagging template strands of a double-stranded vector, and the modified DNAs were transfected into simian COS-7 cells. The DNAs replicated in the cells were recovered and were transfected again into Escherichia coli. The DNA replication efficiencies of plasmids containing T(6-4)T and T=T in the template strand for lagging strand synthesis were 93 and 79%, respectively, as compared with the unmodified DNA. Similar inhibitory effects were observed in the cases of the photoproducts in the template strand for leading strand synthesis (71 and 58%, respectively). These results indicated that T(6-4)T blocked DNA replication more weakly than T=T during leading and lagging strand syntheses in mammalian cells. The mutation frequencies of T(6-4)T were 2.3 and 4.7% in the leading and lagging template strands, respectively. The T=T lesion was less mutagenic and induced mutations with 0.2-0.7% frequencies. The T(6-4)T lesion primarily elicited 3'-T-->C substitutions, and T=T induced various types of mutations. These results indicate that T(6-4)T is more mutagenic than T=T during leading and lagging strand syntheses in simian cells. Moreover, this is the first evidence that shows T(6-4)T mainly elicits targeted substitutions at its 3'-T site in mammalian cells.  相似文献   

8.
The binding specificity was defined of a human ultraviolet light-damaged DNA recognition protein (UV-DRP), the activity of which is absent in some xeroderma pigmentosum complementation group E cells. Our results suggest that cyclobutane pyrimidine dimers (CPDs) are not high affinity UV-DRP binding sites--a finding consistent with other reports on this protein (Hirschfeld et al., (1990) Mol. Cell Biol., 10, 2041-2048). A major role for 6-4 photoproducts in UV-DRP binding was suggested in studies showing that irradiated oligonucleotides containing a T4C UV box sequence, which efficiently forms a TC 6-4 photoproduct, was a superior substrate for the UV-DRP when compared to a similar irradiated oligonucleotide having a T5 sequence. The latter sequence forms CPDs at a much higher frequency than 6-4 photoproducts. In a more direct approach, T4C-containing oligonucleotides complexed with the UV-DRP were separated from the unbound oligonucleotide fraction and the frequencies of 6-4 photoproducts in the two DNA populations were compared. The UV-DRP-bound fraction was highly enriched for the 6-4 lesion over the unbound fraction supporting the conclusion that 6-4 photoproducts are the principal binding cues for the UV-DRP.  相似文献   

9.
We report the preparation of a deoxyribooligonucleotide containing a new thymine (6-4) photoproduct analog. The (6-4) photoproduct is one of the major forms of DNA lesions, and leads to mutation in DNA. An antibody (64M5) that binds the (6-4) photoproduct has been described. To investigate the interaction of the photoproduct with the 64M5 antibody, we prepared a (6-4) photoproduct analog in which the two thymines were connected with a formacetal linkage. With UV-irradiation, the thymine dimer with the formacetal linkage reacted to the (6-4) photoproduct faster than the phosphodiesterified dimer, and the yields of the analog was higher than those of the natural thymine dimer. The 64M5 antibody exhibited sufficient binding to a tetranucleotide containing the (6-4) photoproduct analog with a formacetal linkage, although the association constant was slightly lower than that for the natural lesion. This (6-4) photoproduct analog may be useful for investigation of other proteins that recognize the (6-4) photoproduct.  相似文献   

10.
Ultraviolet light induces damage to DNA, with the majority of the damage expressed as the formation of cyclobutane dimers and pyrimidine-pyrimidone (6-4) photoproducts. The (6-4) photoproducts have been implicated as important UV light-induced premutagenic DNA lesions. The most abundant of the (6-4) products is the thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct, or TC (6-4) product. The structure of the TC (6-4) product was deduced by proton NMR, IR, and fast atom bombardment mass spectroscopy, and the product was found to differ from the previously described photoadduct, Thy(6-4)Pyo, by the presence of an amino group at the 5 position of the 5' pyrimidine. The implications of this structure on DNA base pairing and the induction of ultraviolet light-induced mutations are discussed.  相似文献   

11.
Radioimmunoassays that detect pyrimidine-pyrimidone (6-4) photoproducts and cyclobutane dimers were used to determine the relative induction of these photoproducts in nucleosomal (core) and internucleosomal (linker) DNA in human cell chromatin irradiated with UV light. Cyclobutane dimers were formed in equal amounts/nucleotide in core and linker DNA, whereas (6-4) photoproducts occurred with 6-fold greater frequency/nucleotide in linker DNA.  相似文献   

12.
The UV-induced (6-4)photoproducts and their repair in individual human cells were quantitatively determined by argon-laser imaging microspectrofluorometry or autoradiography with a well-characterized monoclonal antibody against (6-4)photoproducts. (6-4)Photoproduct induction curves were linear as a function of UV dose, using both methods. The formation of (6-4)photoproducts was detected in the cells irradiated with as low as 10 and 25 J/m2 of UV by autoradiography and laser cytometry, respectively. Normal cells repaired more than 80% of the initial damage within 4 h post irradiation. In contrast, almost no repair was observed in xeroderma pigmentosum cells (complementation group A) within 8 h.  相似文献   

13.
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defective in the UV-sensitive cells. In contrast, only 20-60% of antibody-binding sites specific for cyclobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair of (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude that a consequence of DNA repair in CHO cells is modification rather than removal of cyclobutane dimers.  相似文献   

14.
In order to calculate the relative cytotoxicity and mutagenicity of (5-6) cyclobutane pyrimidine dimers and (6-4) photoproducts, we have measured survival and mutation induction in UV-irradiated excision-deficient E. coli uvrA cells, with or without complete photoreactivation of the (5-6) dimers. Radioimmunoassays with specificity for (5-6) dimers or (6-4) photoproducts have shown that maximum photoreactivation eliminates all of the (5-6) dimers produced up to 10 Jm-2 254-nm light, while it has no effect on (6-4) photoproducts. These results were confirmed by measuring the frequency of T4 endonuclease V-sensitive sites. Based on the best fit equations for survival and mutation induction, we have found that the calculated cytotoxicity of (6-4) photoproducts is similar to that of (5-6) dimers; however, the former is much more mutagenic than the latter.  相似文献   

15.
The mutagenic properties of UV-induced photoproducts, both the cis-syn thymine-thymine dimer (TT) and the thymine-thymine pyrimidine pyrimidone (6-4) photoproduct [T(6-4)T] were studied in mammalian cells using shuttle vectors. A shuttle vector able to replicate in both mammalian cells and bacteria was produced in its single-stranded DNA form. A unique photoproduct was inserted at a single restriction site and after recircularization of the single-stranded DNA vector, this latter was transfected into simian COS7 cells. After DNA replication the vector was extracted from cells and used to transform bacteria. Amplified DNA was finally analyzed without any selective screening, DNA from randomly picked bacterial colonies being directly sequenced. Our results show clearly that both lesions are mutagenic, but at different levels. Mutation frequencies of 2 and 60% respectively were observed with the TT dimer and the T(6-4)T. With the TT dimer the mutations were targeted on the 3'-T. With the T(6-4)T a large variety of mutations were observed. A majority of G-->T transversions were semi-targeted to the base before the 5'-T of the photoproduct. These kinds of mutations were not observed when the same plasmid was transfected directly into SOS-induced JM105 bacteria or when the T(6-4)T oligonucleotide inserted in a different plasmid was replicated in SOS-induced SMH10 Escherichia coil bacteria. These semi-targeted mutations are therefore the specific result of bypass of the T(6-4)T lesion in COS7 cells by one of the eukaryotic DNA polymerases.  相似文献   

16.
Biological studies suggest that a significant proportion of the cytotoxicity observed in mammalian cells after uv irradiation may be due to damage other than cyclobutane dimers in DNA. Although pyrimidine-pyrimidone (6-4) photoproducts have been implicated as major contributors to cell lethality, their induction has been measured at considerably less than cyclobutane pyrimidine dimers when measured by chromatographic techniques. Because the yield of (6-4) photoproducts may be reduced by their lability to extreme heat and pH, we have advised an alternative, immunological quantification which does not require DNA hydrolysis. Affinity-purified rabbit antisera were used to precipitate low molecular weight 32P-labeled PM2 DNA irradiated with increasing fluences of uv light. DNA of known molecular weight was used to determine rates of induction for antibody-binding sites associated with (6-4) photoproducts and cyclobutane dimers. These rates were calculated to be 0.6 (6-4) photoproducts and 1.2 cyclobutane dimers/10(8) Da/J/m2. At low uv fluences (6-4) photoproducts were induced at one-half the rate of cyclobutane dimers, whereas at higher fluences (6-4) photoproducts predominated.  相似文献   

17.
Abstract

The interactions between chemically synthesized DNA fragments containing a T(6-4)T and antigen binding fragments (Fab) or single-chain antibodies (scFv) were investigated by X-ray crystallography, NMR, and surface plasmon resonance. The high affinity scFv protein was found to bind to the template DNA near the (6-4) photoproduct site and to interfere with DNA polymerase reactions in vitro.  相似文献   

18.
We have developed a method to quantify (6-4) photoproducts in genes and other specific sequences within the genome. This approach utilizes the following two enzymes from Escherichia coli: ABC excinuclease, a versatile DNA repair enzyme which recognizes many types of lesions in DNA, and DNA photolyase, which reverts pyrimidine dimers. DNA is isolated from UV irradiated Chinese hamster ovary cells and digested with a restriction enzyme. Pyrimidine dimers, the major photoproduct produced at biological UV fluences, are then completely repaired by treatment with DNA photolyase. The photoreactivated DNA is treated with ABC excinuclease, electrophoresed in an alkaline agarose gel, transferred to a support membrane and probed for specific genomic sequences. Net incisions produced by ABC excinuclease following photoreactivation are largely due to the presence of (6-4) photoproducts. These adducts are quantitated by measuring the reduction of intensity of the full length fragments on the autoradiogram. Using this approach we have shown that (6-4) photoproducts are produced at equal frequency in the dihydrofolate reductase coding sequence and in its 3'-flanking, noncoding sequences and that the formation of (6-4) photoproducts is linear in both sequences up to a UV dose of 60 J/m2. The repair of (6-4) photoproducts in these DNA sequences was measured after a dose of 40 J/m2 over 4-, 8-, and 24-h time periods. The (6-4) photoproducts are repaired more efficiently than pyrimidine dimers in both sequences and there is preferential repair of (6-4) photoproducts in the dihydrofolate reductase gene compared with the downstream, noncoding sequences.  相似文献   

19.
UV-induced pyrimidine(6-4)pyrimidone photoproducts in DNA of mammalian cells are apparently repaired much more rapidly than cyclobutane dimers. Since only immunological assays for (6-4) photoproducts have been sensitive enough for repair measurements, it was possible that these apparently rapid repair kinetics reflected a change in physical conformation of antibody-binding sites, resulting in epitope loss rather than excision. To discriminate between these possibilities, we developed a procedure to photochemically convert (6-4) photoproducts to single-strand breaks in UV-irradiated DNA with a background low enough to permit repair measurements. Analysis of a specific DNA sequence indicated that photoinduced alkali-labile sites (PALS) were induced with the same site-specificity as (6-4) photoproducts. Normal human and xeroderma pigmentosum (XP) variant cells rapidly excised (6-4) photoproducts measured as PALS, but little repair was seen in cells from XP complementation group A. These repair kinetics corresponded to those determined in the same samples by radioimmunoassay of (6-4) photoproducts. Thus we conclude that the rapid repair of (6-4) photoproducts observed in UV-irradiated human cells is not the result of a conformational change resulting in epitope loss, but reflects excision of this photoproduct from DNA.  相似文献   

20.
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号