首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyoxalase I from rat liver was purified about 25-fold by acetone fractionation and ion-exchange chromatography on CM-Sephadex and DEAE-cellulose columns. The kinetic study of the enzymatic reaction supported the one-substrate mechanism : the hemimercaptal adduct produced nonenzymatically from methylglyoxal and glutathione is the substrate. The Km value determined was 0.1 mm and similar to that of porcine erythrocytes enzyme but differed significantly from that of yeast enzyme. It was inhibited by free glutathione competitively (Ki 1.2 mm). Kinetic studies on inhibition of glyoxalase I by MS–3 which was obtained from a cultured mushroom, Stereum hirsutum, indicated the inhibition type was competitive with the hemimercaptal adduct (Ki 4.6 × 10?6 m). By the graphical study of the multiple inhibition kinetics free glutathione and MS–3 were shown to bind at the same sites of the enzyme.  相似文献   

2.
The purification of glyoxalase I (S-lactoyl-glutathione methylglyoxal-lyase (isomerizing) EC 4.4.1.5) from DBA/1J mouse liver employing ion exchange and affinity chromatography is described. The enzyme was purified 1140-fold and it exhibits a specific activity of 2200 units/mg of protein. The activity was determined to be homogeneous by sedimentation velocity and sedimentation equilibrium ultracentrifugation and by polyacrylamide electrophoresis. The molecular weight is approimately 43 000 and the sedimentation coefficient is 3.4 S. Kinetic data are consistent with a one-substrate (hemimercaptal) reaction mechanism but do not rule out alternate branches at low substrate and free glutathione concentrations.  相似文献   

3.
4.
The glyoxalase I gene ( gloA ) of Escherichia coli has been cloned and used to create a null mutant. Cells overexpressing glyoxalase I exhibit enhanced tolerance of methylglyoxal (MG) and exhibit elevated rates of detoxification, although the increase is not stoichiometric with the change in enzyme activity. Potassium efflux via KefB is also enhanced in the overexpressing strain. Analysis of the physiology of the mutant has revealed that growth and viability are quite normal, unless the cell is challenged with MG either added exogenously or synthesized by the cells. The mutant strain has a low rate of detoxification of MG, and cells rapidly lose viability when exposed to this electrophile. Activation of KefB and KefC is diminished in the absence of functional glyoxalase I. These data suggest that the glutathione-dependent glyoxalase I is the dominant detoxification pathway for MG in E . coli and that the product of glyoxalase I activity, S-lactoylglutathione, is the activator of KefB and KefC.  相似文献   

5.
In mammalian red blood cells the metabolism of methylglyoxal, and some alpha-ketoaldehydes, takes place via two, generally, highly active enzymes, glyoxalase 1 and 2. The 1H NMR spin-echo spectra of horse erythrocytes, and the various reactants in the glyoxalase system, were characterized as a prelude to obtaining series of spectra in time courses of methylglyoxal metabolism. We characterized the kinetics of the enzyme system in red cells from a normal horse and also from one which had very low activity of glyoxylase 2. The kinetics of the reaction scheme, with methylglyoxal as the starting substrate, were obtained from 1H NMR spectra and analyzed with a computer model of the scheme. The most salient feature of the normal system was the very high feed-forward inhibition (KiHTA = 0.1 microM) of glyoxalase 2 by the hemithioacetal which is the substrate of glyoxalase 1. The glyoxalase-2-deficient red cells were used to test whether S-lactoylglutathione is transported from red cells via the glutathione-S-conjugate transporter; this transport appeared not to occur. Because methylglyoxal is extremely rapidly removed (half-life, approximately 5 min) from normal red cells, it is difficult to assess the effect of this compound on glycolysis but the slow decline evident in the deficient cells allowed a study of the effects on L-lactate production; no effects were apparent.  相似文献   

6.
Yeast glyoxalase I was inactivated by arginine-specific reagents. Inactivation by 2,3-butanedione, phenylglyoxal and camphorquinone 10-sulfonic acid followed pseudo first-order kinetics with the rate dependent upon modifier concentration. Extrapolation to complete inactivation showed modification of approx. two of the ten total arginyl residues in the native enzyme, with approx. one residue protected by glutathione (GSH) as determined by [ring-14C]phenylglyoxal incorporation. GSH protected the enzyme from inactivation, whereas methylglyoxal, glutathione disulfide (GSSG) and dithiothreitol afforded partial protection. The hemimercaptal of methylglyoxal and GSH and the catalytic product, S-lactoylglutathione provided substantial protection from inactivation. A methyl ester placed on the glycyl carboxyl moiety of GSH abolished all protective capability which suggests that this functionality is responsible for binding to the enzyme. These results provide the first evidence concerning the molecular binding mode of GSH to an enzyme. Arginyl residues are proposed as anionic recognition sites for glutathione on other GSH-utilizing enzymes.  相似文献   

7.
The glyoxalase system of human promyelocytic leukaemia HL60 cells was substantially modified during differentiation to neutrophils. The activity of glyoxalase I was decreased and the activity of glyoxalase II was markedly increased relative to the level in control HL60 promyelocytes. There was a decrease in the apparent maximum velocity, Vmax, of glyoxalase I, and an increase in the Vmax of glyoxalase II. The apparent Michaelis constants for both enzymes remained unchanged. The flux of intermediates metabolised via the glyoxalase system increased during differentiation, as judged by the formation of D-lactic acid, whereas the percentage of glucotriose metabolised via the glyoxalase system remained unchanged. The cellular concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, were markedly decreased during differentiation. The maturation of HL60 promyelocytes is associated with an increased ability to metabolise S-D-lactoylglutathione by glyoxalase II and a concomitant decrease in the mean intracellular concentrations of S-D-lactoylglutathione and methylglyoxal. The maintenance of a high concentration of S-D-lactoylglutathione in HL60 promyelocytes may be related to the status of the microtubular cytoskeleton, since S-D-lactoylglutathione potentiates the GTP-promoted assembly of microtubules.  相似文献   

8.
The glyoxalase pathway catalyzes the formation of d-lactate from methylglyoxal, a toxic byproduct of glycolysis. In trypanosomatids, trypanothione replaces glutathione in this pathway, making it a potential drug target, since its selective inhibition might increase methylglyoxal concentration in the parasites. Two glyoxalase II structures were solved. One with a bound spermidine molecule (1.8 A) and the other with d-lactate at the active site (1.9 A). The second structure was obtained by crystal soaking with the enzyme substrate (S)-d-lactoyltrypanothione. The overall structure of Leishmania infantum glyoxalase II is very similar to its human counterpart, with important differences at the substrate binding site. The crystal structure of L. infantum glyoxalase II is the first structure of this enzyme from trypanosomatids. The differential specificity of glyoxalase II toward glutathione and trypanothione moieties was revealed by differential substrate binding. Evolutionary analysis shows that trypanosomatid glyoxalases II diverged early from eukaryotic enzymes, being unrelated to prokaryotic proteins.  相似文献   

9.
The glyoxalase system catalyses the metabolism of methylglyoxal to D-lactic acid, via the intermediate S-D-lactoylglutathione. It is present in human neutrophils and undergoes a significant modification during functional activation--induction of chemotaxis, phagocytosis and degranulation. During the activation of neutrophils with serum-opsonised zymosan and the tumour-promoting phorbol diester 12-O-tetradecanoylphorbol 13-acetate, the activity of glyoxalase I increases and the activity of glyoxalase II decreases by 20-40% of their activities in resting cells, in the initial 10 min of the activation period. Determination of the Michaelis constant, Km, and the apparent maximum velocity, Vmax, for these enzymatic reactions indicates that the change in activity is due to a non-competitive activation and inhibition of glyoxalase I and glyoxalase II, respectively. This is consistent with a modification of the glyoxalase enzyme protein during the activation response. This modification occurs under aerobic and anaerobic incubation conditions. The concentration of S-D-lactoylglutathione increases approx. 100% of the resting cell concentration during the initial 10 min of the activation period. The presence of S-D-lactoylglutathione in neutrophils may be related to its ability to stimulate microtubule assembly.  相似文献   

10.
The human red-blood-cell glyoxalase system was modified by incubation with high concentrations of glucose in vitro. Red-blood-cell suspensions (50%, v/v) were incubated with 5 mM- and 25 mM-glucose to model normal and hyperglycaemic glucose metabolism. There was an increase in the flux of methylglyoxal metabolized to D-lactic acid via the glyoxalase pathway with high glucose concentration. The increase was approximately proportional to initial glucose concentration over the range studied (5-100 mM). The activities of glyoxalase I and glyoxalase II were not significantly changed, but the concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, and the percentage of glucotriose metabolized via the glyoxalase pathway, were significantly increased. The increase in the flux of intermediates metabolized via the glyoxalase pathway during periodic hyperglycaemia may be a biochemical factor involved in the development of chronic clinical complications associated with diabetes mellitus.  相似文献   

11.
Glyoxalase II [S-(2-hydroxyacyl)glutathione hydrolase], one of the components of the glyoxalase system, catalyzes the hydrolysis of S-lactoylglutathione to glutathione and d-lactic acid. The enzyme was partially purified from the yeast Hansenula mrakii IFO 0895 by successive column chromatographies and polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 22,000 daltons by gel-filtration of Sephadex G-150 column chromatography and 24,000 daltons by SDS-polyacrylamide gel electrophoresis. The enzyme was specific to S-lactoyglutathione and S-acetylglutathione. The activity of the enzyme was strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2. The enzyme activity was also inhibited by hemimercaptal, a non-enzymatic condensation product between glutathione and methylglyoxal.  相似文献   

12.
Substrate specificity of bovine liver formaldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Formaldehyde dehydrogenases isolated from several different biological sources have been reported to catalyze the NAD+-dependent oxidative acylation of glutathione by methylglyoxal to form S-pyruvylglutathione, suggesting the involvement of this enzyme in the metabolism of methylglyoxal. However, formaldehyde dehydrogenase from bovine liver is found not to use methylglyoxal or related alpha-ketoaldehydes as substrates. Using methylglyoxal with the enzyme under conditions favoring the forward reaction did not result in the formation of S-pyruvylglutathione. Using independently synthesized S-pyruvylglutathione with the enzyme under conditions favoring the reverse reaction did not result in the production of methylglyoxal. In addition, methylglyoxal and several related alpha-ketoaldehydes did not exhibit detectable activity with formaldehyde dehydrogenase partially purified from human liver, contrary to a previous report. Some, if not all, past reports that methylglyoxal serves as a substrate for the dehydrogenase may be due to the demonstrated presence of contaminating formaldehyde in some commercially available preparations of methylglyoxal. In a related study, S-hydroxymethylglutathione, formed by pre-equilibrium addition of formaldehyde to glutathione, is concluded to be direct substrate for the dehydrogenase. This follows from the observation that the catalytic turnover number of the enzyme in the forward direction exceeds by a factor of approximately 20 the first order rate constant for decomposition of S-hydroxymethylglutathione to glutathione and formaldehyde (k = 5.03 +/- 0.30 min-1, pH 8, 25 degrees C).  相似文献   

13.
The glyoxalase pathway of Leishmania infantum was kinetically characterized as a trypanothione-dependent system. Using time course analysis based on parameter fitting with a genetic algorithm, kinetic parameters were estimated for both enzymes, with trypanothione derived substrates. A K(m) of 0.253 mm and a V of 0.21 micromol.min(-1).mg(-1)for glyoxalase I, and a K(m) of 0.098 mm and a V of 0.18 micromol.min(-1).mg(-1) for glyoxalase II, were obtained. Modelling and computer simulation were used for evaluating the relevance of the glyoxalase pathway as a potential therapeutic target by revealing the importance of critical parameters of this pathway in Leishmania infantum. A sensitivity analysis of the pathway was performed using experimentally validated kinetic models and experimentally determined metabolite concentrations and kinetic parameters. The measurement of metabolites in L. infantum involved the identification and quantification of methylglyoxal and intracellular thiols. Methylglyoxal formation in L. infantum is nonenzymatic. The sensitivity analysis revealed that the most critical parameters for controlling the intracellular concentration of methylglyoxal are its formation rate and the concentration of trypanothione. Glyoxalase I and II activities play only a minor role in maintaining a low intracellular methylglyoxal concentration. The importance of the glyoxalase pathway as a therapeutic target is very small, compared to the much greater effects caused by decreasing trypanothione concentration or increasing methylglyoxal concentration.  相似文献   

14.
The activities of 2-oxoaldehyde-metabolizing enzymes (glyoxalase I, glyoxalase II, methyl- glyoxal reductase, methylglyoxal dehydrogenase and lactaldehyde dehydrogenase) were found to be widely distributed among microorganisms. One of the enzymes, methylglyoxal reductase, which catalyzes the reductive conversion of methylglyoxal into lactaldehyde, was purified from Escherichia coli cells. The enzyme was judged to be homogeneous on polyacrylamide gel electrophoresis and was a monomer with a molecular weight of 43000. The enzyme was most active at pH 6.5 and 45°C. The enzyme utilized both NADPH and NADH for the reduction of 2- oxoaldehydes (glyoxal, methylglyoxal, phenylglyoxal and 4,5-dioxovalerate) and some aldehydes (glycolaldehyde, D,l-glyceraldehyde, propionaldehyde and acetaldehyde). The Km values of the enzyme for methylglyoxal, NADPH and NADH were 4.0 mm, 1.7 fiM and 2.8 /¿m, respectively. The product of methylglyoxal reduction was identified as lactaldehyde. The enzyme from E. coli cells was different from the yeast and goat liver enzymes in both molecular structure and substrate specificity.  相似文献   

15.
S-(p-azidophenacyl)-glutathione, l, is a linear competitive inhibitor at pH 7.40 of beef liver glyoxalase II with Ki = 7.96 × 10?4 M. On irradiation at 340 nm it covalently inhibits glyoxalase II to a level of 42 ± 5% inhibition. This photoaffinity labelling is prevented by the presence of a glyoxalase II competitive inhibitor (the hemimercaptal of glutathione and methylglyoxal). A crude preparation of sheep liver glutathione S-transferases is also irreversibly inactivated (86% ± 5% inhibition) by irradiation at 320 nm in the presence of l.  相似文献   

16.
Methylglyoxal is the most important intracellular glycation agent, formed nonenzymatically from triose phosphates during glycolysis in eukaryotic cells. Methylglyoxal-derived advanced glycation end-products are involved in neurodegenerative disorders (Alzheimer's, Parkinson's and familial amyloidotic polyneurophathy) and in the clinical complications of diabetes. Research models for investigating protein glycation and its relationship to methylglyoxal metabolism are required to understand this process, its implications in cell biochemistry and their role in human diseases. We investigated methylglyoxal metabolism and protein glycation in Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of protein glycation by methylglyoxal, we found that yeast cells growing on d-glucose (100 mM) present several glycated proteins at the stationary phase of growth. Intracellular methylglyoxal concentration, determined by a specific HPLC based assay, is directly related to argpyrimidine formation. Moreover, exposing nongrowing yeast cells to a higher d-glucose concentration (250 mM) increases methylglyoxal formation rate and argpyrimidine modified proteins appear within 1 h. A kinetic model of methylglyoxal metabolism in yeast, comprising its nonenzymatic formation and enzymatic catabolism by the glutathione dependent glyoxalase pathway and aldose reductase, was used to probe the role of each system parameter on methylglyoxal steady-state concentration. Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant yeast strains showed that the glyoxalase pathway and aldose reductase are equally important for preventing protein glycation in Saccharomyces cerevisiae.  相似文献   

17.
Methylglyoxal is an endogenous electrophile produced in Escherichia coli by the enzyme methylglyoxal synthase to limit the accumulation of phosphorylated sugars. In enteric bacteria methylglyoxal is detoxified by the glutathione-dependent glyoxalase I/II system, by glyoxalase III, and by aldehyde reductase and alcohol dehydrogenase. Here we demonstrate that glyoxalase III is a stationary-phase enzyme. Its activity reached a maximum at the entry into the stationary phase and remained high for at least 20 h. An rpoS- mutant displayed normal glyoxalase I and II activities but was unable to induce glyoxalase III in stationary phase. It thus appears that glyoxalase III is regulated by rpoS and might be important for survival of non-growing E. coli cultures.  相似文献   

18.
Chaplen FW 《Cytotechnology》1998,26(3):173-183
Methylglyoxal is a toxic metabolite unavoidably produced in mammalian systems as a by-product of glycolysis. Detoxification of this compound occurs principally through the glyoxalase pathway, which consists of glyoxalase I and glyoxalase II, and requires reduced glutathione as a co-enzyme. Recently, it has been demonstrated that variations in glucose, glutamine and fetal bovine serum levels can cause significant changes in the intracellular concentration of methylglyoxal. More importantly, comparative studies involving wild-type Chinese hamster ovary cells and clones overexpressing glyoxalase I indicate that glucose and glutamine, within the range normally found in cell culture media, can cause decreased cell viability mediated solely through increased production of methylglyoxal. In addition, endogenously produced methylglyoxal has been shown to cause apoptosis in cultured HL60 cells. While the exact mechanism of the impact of methylglyoxal on cultured cells is unknown, methylglyoxal is a potent protein and nucleic acid modifying agent at physiological concentrations and under physiological conditions. Protein modification occurs mainly at arginine, lysine and cysteine residues and is believed to be an important signal for the degradation of senescent proteins. Modification of arginine and lysine results in the irreversible formation of advanced glycation endproducts, whereas modification of cysteine results in the formation of a highly reversible hemithioacetal. Methylglyoxal also forms adducts with nucleic acids, principally with guanyl residues. At high extracellular concentrations, it is genotoxic to cells grown in culture. Even at physiological concentrations (100 nM free methylglyoxal), methylglyoxal can modify unprotected plasmid DNA and cause gene mutation and abnormal gene expression. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Lipid peroxidation in biological membranes is accompanied by malonic dialdehyde (MDA) formation, but the problem of its further metabolism in cytoplasm remains unsolved. The experimental data obtained in this work showed that the liver fraction prepared by centrifugation at 10,000g contained phosphoglucose isomerase and enzymes of the glyoxalase system. In this fraction in the presence of GSH there is an aggregate of reactions taking place both in membranes (lipid peroxidation) and outside membranes (MDA conversion to methylglyoxal and further to neutral D-lactate). This means that MDA is slowly accumulated because it is a substrate of aldehyde isomerase (MDA <--> methylglyoxal). Most probably, phosphoglucose isomerase serves as this enzyme. We concluded that D-lactate should be regarded as the end product of two different parametabolic reactions: lipid peroxidation or protein glycation.  相似文献   

20.
Glyoxalase I operates on a mixture of rapidly interconverting diasteriomeric thiohemiacetals, formed in a preequilibrium step between glutathione and alpha-ketoaldehyde. That both diasteriomers are directly used as substrates by the enzyme from yeast and from porcine erythrocytes is an outcome of a series of isotope-trapping experiments in which pulse solutions composed of the two diasteriomeric thiohemiacetals, due to [3H]glutathione and phenylglyoxal, are rapidly mixed with chase solutions containing excess unlabeled glutathione and successively increasing concentrations of glyoxalase I. As the enzyme approaches infinite concentration in the chase solution, the radioactivity incorporated into the S-mandeloylglutathione product approaches 100% of the total radioactivity due to both diasteriomers from the pulse solution. The special properties of the active site that allow the enzyme to accommodate both diasteriomeric substrate forms may also account for the fact that the cis and the trans isomers of various para-substituted S-(phenylethenyl)glutathione derivatives are both strong competitive inhibitors of the enzyme. A catalytic mechanism is proposed for glyoxalase I involving catalyzed interconversion of the bound diasteriomeric thiohemiacetals before transformation to final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号