首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extent of divergence in partial nucleotide sequences from large and small subunit ribosomal RNAs was used to estimate genetic relationships among ascomycetous yeasts and yeastlike fungi. The comparisons showed four phylogenetically distinct groups comprised of the following taxa: Group 1. The budding yeastsSaccharomyces, Saccharomycopsis, Debaryomyces, Metschnikowia, Saturnospora, andLipomyces, and the yeastlike generaAscoidea, Cephaloascus, Dipodascus, Dipodascopsis, andGalactomyces; Group 2.Eremascus, Emericella andCeratocystis; Group 3.Taphrina andProtomyces; Group 4.Schizosaccharomyces. Because of the genetic relationships indicated by sequence analysis, Group 1 taxa are retained in the order Endomycetales, andSchizosaccharomyces is retained in the Schizosaccharomycetales Prillinger et al. ex Kurtzman.  相似文献   

2.
Phylogenetic relationships among 40 New World and Old World members of Apiaceae subfamily Apioideae, representing seven of the eight tribes and eight of the ten subtribes commonly recognized in the subfamily, were inferred from nucleotide sequence variation in the internal transcribed spacer (ITS) regions of 18-26S nuclear ribosomal DNA. Although the sequences are alignable, with only 11% of sites excluded from the analyses because of alignment ambiguity, divergence values in pairwise comparisons of unambiguous positions among all taxa were high and ranged from 0.5 to 33.2% of nucleotides in ITS 1 and from 0 to 33.2% of nucleotides in ITS 2. Average sequence divergence across both spacer regions was 18.4% of nucleotides. Phylogenies derived from ITS sequences estimated using neighbor-joining analysis of substitution rates, and maximum likelihood and parsimony methods give trees of essentially similar topology and indicate that: (1) there is little support for any existing system of classification of the subfamily that is based largely on morphological and anatomical features of the mericarp; (2) there is a major phylogenetic division within the subfamily, with one clade comprising the genus Smyrnium and those taxa belonging to Drude's tribes Dauceae, Scandiceae, and Laserpitieae and the other clade comprising all other examined taxa; and (3) the genera Arracacia, Coaxana, Coulterophytum, Enantiophylla, Myrrhidendron, Prionosciadium, and Rhodosciadium, all endemic to Mexico and Central America, comprise a clade but their relationships to other New World taxa are equivocal. A phylogeny derived from parsimony analysis of chloroplast DNA rpoC1 intron sequences is consistent with, but considerably less resolved than, relationships derived from these ITS regions. This study affirms that ITS sequences are useful for phylogenetic inference among closely related members of Apioideae but, owing to high rates of nucleotide substitution, are less useful in resolving relationships among the more ancestral nodes of the phylogeny.  相似文献   

3.
The evolutionary relationships among members of Apiaceae (Umbelliferae) tribe Scandiceae and representatives of all major lineages of Apioideae (including putatively allied Caucalideae) identified in earlier molecular studies were inferred from nucleotide sequence variation in the internal transcribed spacer regions (ITS1 and ITS2) of nuclear ribosomal DNA. In all, 134 accessions representing 18 genera commonly treated in Scandiceae were analyzed. Phylogenies estimated using maximum parsimony and distance methods were generally similar and suggest that: (1) Scandiceae form a well-supported clade, consisting of the genera Anthriscus, Athamanta (in part), Balansaea, Chaerophyllum, Conopodium, Geocaryum, Kozlovia, Krasnovia, Myrrhis, Myrrhoides, Neoconopodium, Osmorhiza, Scandix, Sphallerocarpus, and Tinguarra; (2) Athamanta is polyphyletic, with A. della-cellae allied with Daucus and A. macedonica placed close to Pimpinella; and (3) Rhabdosciadium and Grammosciadium find affinity with the Aegopodium group of umbellifers, whereas the placement of the monotypic Molopospermum cannot be inferred because of its high sequence divergence. The genus Bubon has been restored with two new combinations, B. macedonicum subsp. albanicum and B. macedonicum subsp. arachnoideum. Scandiceae arise within paraphyletic Caucalideae, the latter comprising two major lineages whose relationships to Scandiceae are not clear. Therefore, a broad treatment of Scandiceae is proposed, with subtribes Scandicinae, Daucinae, and Torilidinae (the latter two representing the Daucus and Torilis subgroups, respectively, of recent molecular systematic investigations).  相似文献   

4.
5.
6.
Evolutionary relationships among 116 representatives (80 genera) ofApiaceae (Umbelliferae) subfam.Apioideae were investigated by comparative sequencing of the two internal transcribed spacers of the 18S–26S nuclear ribosomal DNA repeat. The resultant phylogenies, inferred using maximum parsimony and neighbor-joining methods, clarified the relationships of several genera whose phylogenetic placements have heretofore been problematic. Comparisons between the phylogenies inferred and the distribution of several phytochemical (coumarins, flavonoids, and phenylpropenes) and morphological (stomates, pollen, and cotyledonary shape) characters were also made, revealing that many of these characters (like those morphological and anatomical characters of the fruit) are highly homoplastic. It is not surprising then that systems of classification ofApioideae based on these characters, particularly with regard to tribal and subtribal designations and relationships, are unsatisfactory. The results of recent serological investigations of the subfamily support several relationships proposed herein using molecular data.  相似文献   

7.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l.  相似文献   

8.
The mitochondrial ribosomal large subunit (Ls) DNA was used to identify the orchid mycorrhizal fungi found in roots of Dactylorhiza majalis. The gene was amplified using DNA extracted from single pelotons obtained from fresh and silica gel dried roots. Furthermore, sequencing a variety of well-characterized orchid isolates expanded the fungal database of the mitochondrial ribosomal LsDNA. Polymerase chain reaction product length variants present in D. majalis were sequenced and identified using the expanded database. These analyses revealed two different peloton-forming fungi in samples from D. majalis, which sometimes occurred together as a single two-taxa peloton within the same cortex cell. The first taxon belonged to the genus Tulasnella and the second taxon was distantly related to Laccaria.  相似文献   

9.
The genusCryptococcus was found to be heterogeneous on the basis of partial rRNA sequences. The human-pathogenic speciesC. neoformans, comprising 4 serotypes and havingFilobasidiella neoformans andF. bacillispora as teleomorphs, was found at a relatively large distance fromFilobasidium. Serotypes B and C had identical sequences, while in A and D they were different, with D closer to B and C than to A.Filobasidiella depauperata, which lacks a yeast-like anamorph, clustered withF. neoformans.The genusFilobasidium was clearly separated fromFilobasidiella and clustered withC. albidus, C. kuetzingii, C. gastricus, C. lupi, C. vishniaciae, C. bhutanensis, C. aerius, C. terreus andC. ater. The latter may represent the anamorph ofFilobasidium elegans. The organe to red species ofCryptococcus, as well asC. aquaticus andC. yarrowii, were found completely unrelated with these taxa,C. macerans being affiliated toCystofilobasidium capitatum.The genusTrichosporon was found relatively homogeneous; it includesC. humicola, C. curvatus and the filamentous speciesHyalodendron lignicola. Cryptococcus flavus andC. dimennae probably belong to the Tremellales, though distances between these species are large. The positions ofC. laurentii andC. luteolus remains to be determined.  相似文献   

10.
The origin of the anomalodesmatan bivalves and the relationships of the constituent families are far from being settled. Phylogenetic uncertainties result from the morphological heterogeneity of the Anomalodesmata and from parallel/convergent evolution of several character complexes due to similar life habits. Here, we assess these problems with 26 near-complete anomalodesmatan 18S rRNA sequences from 12 out of 15 families and a selection of heteroconch outgroup taxa. The robustly monophyletic Anomalodesmata share insertions in the V2 and V4 expansion regions. Both parsimony and maximum-likelihood analyses confirm their position among the basal heterodonts rooting between Carditidae and Lucinidae or, together with the latter, between Carditidae and the remaining Heterodonta. There is no support for monophyletic Myoida, nor for a close relationship of Anomalodesmata with any myoid taxon. At the base of the Anomalodesmata is an unstable cluster of long-branch species belonging to the Poromyidae, Verticordiidae, Lyonsiellidae and Thraciidae. The remaining Anomalodesmata split consistently but with varying branch support into three major clades: the Cuspidariidae excluding Myonera ; a 'thraciid' clade consisting of (Euciroidae, ( Myonera ( Thracia, Cleidothaerus , Myochamidae))); and a 'lyonsiid' clade with Laternulidae, Pandoridae, diphyletic Lyonsiidae due to a robust clade of Lyonsia norwegica and the clavagellid Brechites vaginiferus . Tests of various alternative topologies showed that all are significantly longer but optimal likelihood trees with monophyletic carnivorous taxa and/or Thraciidae are not significantly less likely. These results differ greatly from previous morphological studies. Palaeontological data and homology decisions for selected characters are evaluated in the light of the molecular trees.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 229–246.  相似文献   

11.
The phylogenic relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenic relationships. The phylogenic patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.  相似文献   

12.
Phylogenetic analysis of nucleotide data from small subunit ribosomal DNA (SSU rDNA) sequences (ca. 1685 bp.) was performed on 19 taxa of the Onygenales and three related mitosporic fungi. Phylogenetic trees were constructed by the neighbor-joining method with the sequence data of related taxa obtained from DNA databases. The species in the Onygenales form two clusters and seven subclusters, and the tree topology reflects the traditional classification by Currah (1985) with some exceptions. The Myxotrichaceae is placed in the different lineage, separate from other plectomycetous taxa and among the Leotiales and the Erysiphales. Furthermore, two separate lineages in the Myxotrichaceae were found. Tree topology suggested the Onygenaceae is polyphyletic and composed of three subgroups; 1) most members of Onygenaceae, 2)Spiromastix warcupii, and 3) pathogenic dimorphic fungi classified inAjellomyces.  相似文献   

13.
The phylogeny of Ptychostomum was first spacer (ITS) region of the nuclear ribosomal (nr) DNA DNA rps4 sequences. Maximum parsimony, maximum undertaken based on analysis of the internal transcribed and by combining data from nrDNA ITS and chloroplast likelihood, and Bayesian analyses all support the conclusion that the reinstated genus Ptychostomum is not monophyletic. Ptychostomum funkii (Schwagr.) J. R. Spence (≡ Bryum funkii Schwaigr.) is placed within a clade containing the type species of Bryum, B. argenteum Hedw. The remaining members of Ptychostomum investigated in the present study constitute another well-supported clade. The results are congruent with previous molecular analyses. On the basis of phylogenetic evidence, we agree with transferring B. amblyodon Mull. Hal. (≡ B. inclinatum (Brid.) Turton≡ Bryum archangelicum Bruch & Schimp.), Bryum lonchocaulon Mull. Hal., Bryum pallescens Schleich. ex Schwaigr., and Bryum pallens Sw. to Ptychostomum.  相似文献   

14.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

15.
Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of molecular characters. Restriction enzyme analysis of the chloroplast DNA (cpDNA) of the bulb onion (Allium cepa), Japanese bunching onion (A. fistulosum), wildAllium species in sect.Cepa andPhyllodolon, and the outgroupsA. ampeloprasum andA. tuberosum detected 39 polymorphisms.Allium cepa andA. vavilovii were identical for all characters. Cladistic analysis generated three most-parsimoniousWagner trees of 44 steps differing only in a zero-length branch.Allium fistulosum andA. altaicum (sect.Phyllodolon) comprised a monophyletic lineage separated from theA. cepa andA. vavilovii of sect.Cepa. The unresolved node was composed ofA. galanthum, A. roylei, and the lineage containingA. cepa, A. vavilovii, A. fistulosum, andA. altaicum. The clade containingA. altaicum, A. cepa, A. fistulosum, A. galanthum, A. roylei, andA. vavilovii remained resolved for strict consensus ofWagner trees of 48 steps or less.Allium pskemense andA. oschaninii were increasingly distant.Allium oschaninii has been proposed as the progenitor of the bulb onion, but was more closely related to the common progenitor of all species in sect.Cepa andPhyllodolon. Phylogenies estimated from cpDNA characters usingDollo parsimony resulted in a single most-parsimonious tree of 46 steps and agreed with phylogenies based onWagner parsimony. Polymorphic restriction enzyme sites in the 45s ribosomal DNA were not used to estimate phylogenies because of uncertain homologies, but are useful for identifying interspecific hybrids. The maternal phylogenies estimated in this study help to distinguish wildAllium species closely related to the bulb onion. Although not in agreement with classifications based on morphology, the phylogenies closely reflected crossability among species in sect.Cepa andPhyllodolon.  相似文献   

16.
To determine the molecular phylogenic location of Plagiorchis muris, 28S D1 ribosomal DNA (rDNA) and mitochondrial cytochrome C oxidase subunit I (mtCOI) were sequenced and compared with other trematodes in the family Plagiorchiidae. The 28S D1 tree of P. muris was found to be closely related to those of P. elegans and other Plagiorchis species. And, the mtCOI tree also showed that P. muris is in a separate clade with genus Glypthelmins. These results support a phylogenic relationship between members of the Plagiorchiidae, as suggested by morphologic features.  相似文献   

17.
Part of the mitochondrial 12S ribosomal RNA gene was amplified and sequenced for 26 marsupials. Multiple alignments for these sequences as well as seven additional sequences taken from GenBank were obtained using CLUSTAL. PAUP was used for phylogenetic analysis and to obtain random tree-length distributions. Analyses were performed with and without phylogenetic constraints. Our results clearly show that 12S rDNA contains phylogenetic signal at and above the ordinal level and is thus appropriate for addressing phylogenetic questions deep in the mammalian tree. Standard parsimony analyses provide some support for a clade containing diprotodontians, dasyurids,Dromiciops, andNotoryctes; transversion parsimony analysis suggests the possible inclusion of peramelids as well. Within the Diprotodontia, vombatids and phascolarctids cluster together on transversion parsimony and phalangerids may be associated with this clade. The enigmatic tarsipedids are apparently part of a clade that also contains pseudocheirids, petaurids, and acrobatids. The 12S sequences suggest that the origination of extant marsupial orders peaked 15 million years later than the equivalent taxonomic diversification of extant placental orders and may be entirely post-Cretaceous. Families of diprotodontian marsupials originated during the Eocene and early Oligocene, which is consistent with previous single-copy DNA hybridization results.  相似文献   

18.
 Phylogenetic relationships of Coffea species were estimated from the sequences of the internal transcribed spacer (ITS 2) region of nuclear ribosomal DNA. The ITS 2 region of 37 accessions belonging to 26 Coffea taxa and to three Psilanthus species was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The level of variation was high enough to make the ITS 2 a useful tool for phylogenetic reconstruction. However, an unusual level of intraspecific variation was observed leading to some difficulty in interpreting rDNA sequence divergences. Sequences were analysed using Wagner parsimony as well as the neighbour-joining distance method. Coffea taxa were divided into several major groups which present a strong geographical correspondence (i.e. Madagascar, East Africa, Central Africa and West Africa). This organisation is well supported by cytogenetic evidence. On the other hand, the results were in contradiction with the present classification of coffee-tree taxa into two genera, namely Coffea and Psilanthus. Furthermore, additivity of parental rDNA types was not observed in the allotetraploid species C. arabica. Received: 25 July 1996 / Accepted: 18 October 1996  相似文献   

19.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorellaellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily.  相似文献   

20.
Ray Neyland 《Brittonia》2001,53(1):108-115
Cuscuta is a parasitic angiosperm that has been considered alternatively either as a genus within Convolvulaceae or as a monogeneric family in its own right. Although typically placed in the Solanales,Cuscuta has also been positioned within the Polemoniales. Extreme reduction of morphological and anatomical characters, as well as chloroplast genome reductions and rearrangements, has made the phylogenetic placement ofCuscuta uncertain. Analysis of 26S rDNA sequences suggests thatCuscuta is a derived member of Convolvulaceae. Molecular results are discussed in relation to the morphological and anatomical characters of autotrophic members of Convolvulaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号