首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
To identify cyclin-dependent kinase mutants with relaxed cyclin requirements, CDC28 alleles were selected that could rescue a yeast strain expressing as its only CLN G1 cyclin a mutant Cln2p (K129A,E183A) that is defective for Cdc28p binding. Rescue of this strain by mutant CDC28 was dependent upon the mutant cln2-KAEA, but additional mutagenesis and DNA shuffling yielded multiply mutant CDC28-BYC alleles (bypass of CLNs) that could support highly efficient cell cycle initiation in the complete absence of CLN genes. By gel filtration chromatography, one of the mutant Cdc28 proteins exhibited kinase activity associated with cyclin-free monomer. Thus, the mutants' CLN bypass activity might result from constitutive, cyclin-independent activity, suggesting that Cdk targeting by cyclins is not required for cell cycle initiation.  相似文献   

3.
Cdc15p is an essential protein kinase and functions with a group of late mitotic proteins that includes Lte1p, Tem1p, Cdc14p and Dbf2p/Dbf20p to inactivate Cdc28p-Clb2p at the end of mitosis in budding yeast [1] [2]. Cdc14p is activated and released from the nucleolus at late anaphase/telophase to dephosphorylate important regulators of Cdc28p-Clb2p such as Hct1p/Cdh1p, Sic1p and Swi5p in a CDC15-dependent manner [3] [4] [5] [6] [7]. How Cdc15p itself is regulated is not known. Here, we report that both the phosphorylation and localization of Cdc15p are cell cycle regulated. The extent of phosphorylation of Cdc15p gradually increases during cell-cycle progression until some point during late anaphase/telophase when it is rapidly dephosphorylated. We provide evidence suggesting that Cdc14p is the phosphatase responsible for the dephosphorylation of Cdc15p. Using a Cdc15p fusion protein coupled at its carboxyl terminus to green fluorescent protein (GFP), we found that Cdc15p, like its homologue Cdc7p [8] in fission yeast, localizes to the spindle pole bodies (SPBs) during mitosis. At the end of telophase, a portion of Cdc15p is located at the mother-bud neck, suggesting a possible role for Cdc15p in cytokinesis.  相似文献   

4.
Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway.   总被引:30,自引:4,他引:26       下载免费PDF全文
Recombinant G1 cyclin Cln2p can bind to and stimulate the protein kinase activity of p34CDC28 (Cdc28p) in an extract derived from cyclin-depleted and G1-arrested Saccharomyces cerevisiae cells. Upon activating Cdc28p, Cln2p is extensively phosphorylated and conjugated with multiubiquitin chains. Ubiquitination of Cln2p in vitro requires the Cdc34p ubiquitin-conjugating enzyme, Cdc28p, protein phosphorylation and unidentified factors in yeast extract. Ubiquitination of Cln2p by Cdc34p contributes to the instability of Cln2p in vivo, as the rate of Cln2p degradation is reduced in cdc34ts cells. These results provide a molecular framework for G1 cyclin instability and suggest that a multicomponent, regulated pathway specifies the selective ubiquitination of G1 cyclins.  相似文献   

5.
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for cell cycle initiation. In an attempt to identify genes encoding proteins that interact with the Cdc28 protein kinase, high-copy plasmid suppressors of a temperature-sensitive cdc28 mutation were isolated. One such suppressor, CKS1, was found to encode an 18-kilodalton protein that shared a high degree of homology with the suc1+ protein (p13) of Schizosaccharomyces pombe (67% amino acid sequence identity). Disruption of the chromosomal CKS1 gene conferred a G1 arrest phenotype similar to that of cdc28 mutants. The presence of the 18-kilodalton Cks1 protein in yeast lysates was demonstrated by using Cks-1 specific antiserum. Furthermore, the Cks1 protein was shown to be physically associated with active forms of the Cdc28 protein kinase. These data suggest that Cks1 is an essential component of the Cdc28 protein kinase complex.  相似文献   

6.
In budding yeast, the release of the protein phosphatase Cdc14 from its inhibitor Cfi1/Net1 in the nucleolus during anaphase triggers the inactivation of Clb CDKs that leads to exit from mitosis. The mitotic exit pathway controls the association between Cdc14 and Cfi1/Net1. It is comprised of the RAS-like GTP binding protein Tem1, the exchange factor Lte1, the GTPase activating protein complex Bub2-Bfa1/Byr4, and several protein kinases including Cdc15 and Dbf2. Here we investigate the regulation of the protein kinases Dbf2 and Cdc15. We find that Cdc15 is recruited to both spindle pole bodies (SPBs) during anaphase. This recruitment depends on TEM1 but not DBF2 or CDC14 and is inhibited by BUB2. Dbf2 also localizes to SPBs during anaphase, which coincides with activation of Dbf2 kinase activity. Both events depend on the mitotic exit pathway components TEM1 and CDC15. In cells lacking BUB2, Dbf2 localized to SPBs in cell cycle stages other than anaphase and telophase and Dbf2 kinase was prematurely active during metaphase. Our results suggest an order of function of mitotic exit pathway components with respect to SPB localization of Cdc15 and Dbf2 and activation of Dbf2 kinase. BUB2 negatively regulates all 3 events. Loading of Cdc15 on SPBs depends on TEM1, whereas loading of Dbf2 on SPBs and activation of Dbf2 kinase depend on TEM1 and CDC15.  相似文献   

7.
C Wittenberg  S I Reed 《Cell》1988,54(7):1061-1072
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for progression from G1 to S phase in the cell cycle. We present evidence that the active form of the Cdc28 protein kinase is a complex of approximately 160 kd containing an endogenous substrate, p40, and possibly other polypeptides. This complex phosphorylates p40 and exogenous histone H1 in vitro. Cell cycle arrest during G1 results in inactivation of the protein kinase accompanied by the disassembly of the complex. Furthermore, assembly of the complex is regulated during the cell cycle, reaching a maximum during G1. Partial complexes thought to be intermediates in the assembly process phosphorylate histone H1 but not p40. Addition of soluble factors to these partial complexes in vitro restores p40 phosphorylation and causes the complex to increase to the mature size. A model is presented in which p40 phosphorylation is required during G1 for cells to initiate a new cell cycle.  相似文献   

8.
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.  相似文献   

9.
The Cdc2 protein kinase is a key regulator of the G1-S and G2-M cell cycle transitions in the fission yeast Schizosaccharomyces pombe. The activation of Cdc2 at the G2-M transition is triggered by dephosphorylation at a conserved tyrosine residue Y15. The level of Y15 phosphorylation is controlled by the Wee1 and Mik1 protein kinases acting in opposition to the Cdc25 protein phosphatase. Here, we demonstrate that Wee1 overexpression leads to a high stoichiometry of phosphorylation at a previously undetected site in S. pombe Cdc2, T14. T14 phosphorylation was also detected in certain cell cycle mutants blocked in progression through S phase, indicating that T14 phosphorylation might normally occur at low stoichiometry during DNA replication or early G2. Strains in which the chromosomal copy of cdc2 was replaced with either a T14A or a T14S mutant allele were generated and the phenotypes of these strains are consistent with T14 phosphorylation playing an inhibitory role in the activation of Cdc2 as it does in higher eukaryotes. We have also obtained evidence that Wee1 but not Mik1 or Chk1 is required for phosphorylation at this site, that the Mik1 and Chk1 protein kinases are unable to drive T14 phosphorylation in vivo, that residue 14 phosphorylation requires previous phosphorylation at Y15, and that the T14A mutant, unlike Y15F, is recessive to wild-type Cdc2 activity. Finally, the normal duration of G2 delay after irradiation or hydroxyurea treatment in a T14A mutant strain indicates that T14 phosphorylation is not required for the DNA damage or replication checkpoint controls.  相似文献   

10.
BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.  相似文献   

11.
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe.  相似文献   

12.
We report here the identification of CDC37, which encodes a putative Hsp90 co-chaperone, as a multicopy suppressor of a temperature-sensitive allele (cka2-13(ts)) of the CKA2 gene encoding the alpha' catalytic subunit of protein kinase CKII. Unlike wild-type cells, cka2-13 cells were sensitive to the Hsp90-specific inhibitor geldanamycin, and this sensitivity was suppressed by overexpression of either Hsp90 or Cdc37. However, only CDC37 was capable of suppressing the temperature sensitivity of a cka2-13 strain, implying that Cdc37 is the limiting component. Immunoprecipitation of metabolically labeled Cdc37 from wild-type versus cka2-13 strains revealed that Cdc37 is a physiological substrate of CKII, and Ser-14 and/or Ser-17 were identified as the most likely sites of CKII phosphorylation in vivo. A cdc37-S14,17A strain lacking these phosphorylation sites exhibited severe growth and morphological defects that were partially reversed in a cdc37-S14,17E strain. Reduced CKII activity was observed in both cdc37-S14A and cdc37-S17A mutants at 37 degrees C, and cdc37-S14A or cdc37-S14,17A overexpression was incapable of protecting cka2-13 mutants on media containing geldanamycin. Additionally, CKII activity was elevated in cells arrested at the G(1) and G(2)/M phases of the cell cycle, the same phases during which Cdc37 function is essential. Collectively, these data define a positive feedback loop between CKII and Cdc37. Additional genetic assays demonstrate that this CKII/Cdc37 interaction positively regulates the activity of multiple protein kinases in addition to CKII.  相似文献   

13.
Budding yeast polo kinase Cdc5p localizes to the spindle pole body (SPB) and to the bud-neck and plays multiple roles during M-phase progression. To dissect localization-specific mitotic functions of Cdc5p, we tethered a localization-defective N-terminal kinase domain of Cdc5p (Cdc5pDeltaC) to the SPB or to the bud-neck with components specifically localizing to one of these sites and characterized these mutants in a cdc5Delta background. Characterization of a viable, SPB-localizing, CDC5DeltaC-CNM67 mutant revealed that it is defective in timely degradation of Swe1p, a negative regulator of Cdc28p. Loss of BFA1, a negative regulator of mitotic exit, rescued the lethality of a neck-localizing CDC5DeltaC-CDC12 or CDC5DeltaC-CDC3 mutant but yielded severe defects in cytokinesis. These data suggest that the SPB-associated Cdc5p activity is critical for both mitotic exit and cytokinesis, whereas the bud neck-localized Cdc5p is required for proper Swe1p regulation. Interestingly, a cdc5Delta bfa1Delta swe1Delta triple mutant is viable but grows slowly, whereas cdc5Delta cells bearing both CDC5DeltaC-CNM67 and CDC5DeltaC-CDC12 grow well with only a mild cell cycle delay. Thus, SPB- and the bud-neck-localized Cdc5p control most of the critical Cdc5p functions and downregulation of Bfa1p and Swe1p at the respective locations are two critical factors that require Cdc5p.  相似文献   

14.
15.
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins   总被引:52,自引:18,他引:34       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1305-1320
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.  相似文献   

16.
The morphogenesis checkpoint in budding yeast delays cell cycle progression in G(2) when the actin cytoskeleton is perturbed, providing time for cells to complete bud formation prior to mitosis. Checkpoint-induced G(2) arrest involves the inhibition of the master cell cycle regulatory cyclin-dependent kinase, Cdc28p, by the Wee1 family kinase Swe1p. Results of experiments using a nonphosphorylatable CDC28(Y19F) allele suggested that the checkpoint stimulated two inhibitory pathways, one that promoted phosphorylation at tyrosine 19 (Y19) and a poorly characterized second pathway that did not require Cdc28p Y19 phosphorylation. We present the results from a genetic screen for checkpoint-defective mutants that led to the repeated isolation of the dominant CDC28(E12K) allele that is resistant to Swe1p-mediated inhibition. Comparison of this allele with the nonphosphorylatable CDC28(Y19F) allele suggested that Swe1p is still able to inhibit CDC28(Y19F) in a phosphorylation-independent manner and that both the Y19 phosphorylation-dependent and -independent checkpoint pathways in fact reflect Swe1p inhibition of Cdc28p. Remarkably, we found that a Swe1p mutant lacking catalytic activity could significantly delay the cell cycle in vivo during a physiological checkpoint response, even when expressed at single copy. The finding that a Wee1 family kinase expressed at physiological levels can inhibit a nonphosphorylatable cyclin-dependent kinase has broad implications for many checkpoint studies using such mutants in other organisms.  相似文献   

17.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

18.
We have recently reported that protein kinase CK2 phosphortylates both in vivo and in vitro residue serine-46 of the cell cycle regulating protein Cdc28 of budding yeast Saccharomyces cerevisiae, confirming a previous observation that the same site is phosphorylated in Cdc2/Cdk1, the human homolog of Cdc28. In addition, S. cerevisiae in which serine-46 of Cdc28 has been mutated to alanine show a decrease of 33% in both cell volume and protein content, providing the genetic evidence that CK2 is involved in the regulation of budding yeast cell division cycle, and suggesting that this regulation may be brought about in G1 phase of the mammalian cell cycle. Here, we extended this observation reporting that the mutation of serine-46 of Cdc28 to glutamic acid doubles, at least in vitro, the H1-kinase activity of the Cdc28/cyclin A complex. Since this mutation has only little effects on the cell size of the cells, we hypothesize multiple roles of yeast CK2 in regulating the G1 transition in budding yeast.  相似文献   

19.
The existence of multifunctional enzymes in the nucleotide biosynthesis pathways is believed to be one of the important mechanisms to facilitate the synthesis and the efficient supply of deoxyribonucleotides for DNA replication. Here, we used the bacterially expressed yeast thymidylate kinase (encoded by the CDC8 gene) to demonstrate that the purified Cdc8 protein possessed thymidylate-specific nucleoside diphosphate kinase activity in addition to thymidylate kinase activity. The yeast endogenous nucleoside diphosphate kinase is encoded by YNK1, which appears to be non-essential. Our results suggest that Cdc8 has dual enzyme activities and could duplicate the function of Ynk1 in thymidylate synthesis. We also discuss the importance of the coordinated expression of CDC8 during the cell cycle progression in yeast.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号