首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms favoring the recruitment of circulating human basophils to extravascular sites of allergic inflammation are unknown. The basophil secretagogues anti-IgE, and pollen allergens rye grass I and ragweed Ag E (Lol p I and Amb a I) were tested for their ability to promote basophil adherence to umbilical vein endothelial cells. Co-incubation of endothelial cells and basophils with anti-IgE resulted in time and dose-dependent increases in basophil adhesion. These effects were due to activation of the basophil, required both magnesium and calcium, occurred before or in the absence of histamine release, and were seen at concentrations of stimulus below the usual range of secretagogue activity. In contrast, anti-IgE or Ag stimulation of neutrophils, or basophils from donors non-responsive to anti-IgE or Ag with respect to histamine release, had no effect on cell adherence. mAb 60.3, recognizing the CD18 leukocyte adhesion molecule, inhibited anti-IgE-induced enhancement of basophil-endothelial cell binding. Exposure of basophils to low concentrations of Ag in vivo may selectively initiate basophil infiltration into tissue sites of allergic inflammation by enhancing their adherence to endothelium.  相似文献   

2.
3.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

4.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

5.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

6.
Immunofluorescence and flow cytometric techniques have been used to study changes in surface Ag expression and viability that occur during human basophil degranulation. Treatment with polyclonal anti-IgE, FMLP, or the calcium ionophore A23187 induced histamine release, along with rapid and sustained unimodal increases in basophil CD11b mean fluorescence intensity. In contrast, treatment with anti-IgE or FMLP resulted in a decrease in Leu 8 expression. Degranulation did not significantly affect basophil viability (as determined by exclusion of propidium iodide), scatter characteristics, or percentage of identifiable IgE-bearing cells, and an inconsistent association was seen between percent histamine release and reduction in the percent of cells identified by light microscopy after staining with alcian blue. For anti-IgE, dose-dependent changes in CD11b, CD11c, and Leu 8 expression were seen (optimal at 0.1, 0.1, and 1 microgram/ml, respectively), although CD11a expression remained unchanged. Histamine release was optimal at 0.3 microgram/ml anti-IgE, and at superoptimal concentrations, reduced CD11b expression was observed which paralleled decreases in histamine release; reduction of the expression of Leu 8, however, occurred equally at optimal and superoptimal concentrations of anti-IgE. Kinetic analyses of these responses revealed that CD11b up-regulation proceeded more rapidly than histamine release, whereas Leu 8 down-regulation was much slower and did not plateau until 120 min of stimulation. Although changes in CD11b mean fluorescence intensity correlated with the magnitude of histamine release, exposure to stimuli in the absence of calcium (which blocked degranulation) resulted in similar alterations in CD11b and Leu 8, suggesting that degranulation was not required for changes in the surface expression of these adhesion molecules. Interestingly, pretreatment of basophils with drugs that either inhibited or enhanced histamine release (isobutylmethylxanthine and cyclosporin A vs cytochalasin B, respectively) significantly decreased the magnitude of anti-IgE-induced CD11b up-regulation; down-regulation of Leu 8 expression was also partially inhibited by treatment with isobutylmethylaxanthine. These studies demonstrate that activation of human basophils by secretagogues in vitro results in a variety of phenotypic changes including alterations in surface expression of adhesion molecules, and suggest that degranulation in vivo may be accompanied or preceded by changes in adhesion-related functions.  相似文献   

7.
We have examined the effects of cyclosporin A (CsA) and a series of CsA analogs that bind with decreasing affinity to cyclophilin, to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4; LTC4) mediators of inflammatory reactions from human basophils. CsA (8 to 800 nM) concentration-dependently inhibited (5 to 60%) histamine release from peripheral blood basophils challenged with anti-IgE. CsA was more potent (92.6 +/- 1.8 vs 59.1 +/- 4.5%; p less than 0.001) and, at low concentrations, more effective when the channel-operated influx of Ca2+ was bypassed by the ionophore A23187 (IC40 = 24.1 +/- 3.9 vs 105.5 +/- 22.2 nM; p less than 0.05). CsA had no effect on the release of histamine caused by phorbol myristate and bryostatin 1 that activate different isoforms of protein kinase C. Inhibition of histamine release from basophils challenged with anti-IgE was not abolished by washing (three times) the cells before anti-IgE challenge. CsA also inhibited the de novo synthesis of LTC4 from basophils challenged with anti-IgE. The inhibitory effect of CsA was very rapid, and the drug, added from 1 to 10 min during the reaction, inhibited the ongoing release of histamine caused by anti-IgE and by A23187. The experiments with CsA analogs (CsG, CsC, CsD, and CsH) showed that CsH, which has an extremely low affinity for cyclophilin, has no effect on basophil mediator release. In addition, there is a significant correlation between the concentrations of CsA, G, C, and D that inhibited by 30% the histamine release induced by anti-IgE (r = 0.99; p less than 0.001) and by A23187 (r = 0.87; p less than 0.001) and their affinity for cyclophilin.  相似文献   

8.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

9.
We have shown that fluids collected from antigen-challenged skin blisters during the late phase reaction cause the release of substantial amounts of histamine (means = 42%, n = 14) from human basophils in vitro. Control fluids collected either during the immediate phase or from an unchallenged blister released less than or equal to 10% histamine from both basophils and lung mast cells. Late phase blister fluids induced low levels of histamine release from human lung cells (means = 11%, n = 4) that were slightly but not significantly greater than levels induced by control blister fluids. The characteristics of basophil release were similar to IgE-mediated stimuli in dose dependence, calcium and temperature requirements, and kinetics. The IgE dependence of the late phase blister fluid was demonstrated by desensitization of the basophils to anti-IgE, which obviated the response to anti-IgE and blister fluid but did not affect a non-IgE-mediated stimulus. Removal of the cell surface IgE with lactic acid also abolished the response to both anti-IgE and late phase blister fluid. Incubation of the "stripped" cells with serum containing IgE myeloma restored the response to anti-IgE but failed to affect response to late phase blister fluid. The characteristics of release obtained with this factor closely resemble those of an IgE-dependent histamine releasing factor from cultured macrophages previously described by our group.  相似文献   

10.
The gene product of the steel locus of the mouse represents a growth factor for murine mast cells and a ligand for the c-kit proto-oncogene receptor, a member of the tyrosine kinase receptor class of oncogenes (for review, see O. N. Witte. 1990. Cell 63:5). We have studied the effect of the human recombinant c-kit receptor ligand stem cell factor (rhSCF) on the release of inflammatory mediators from human skin mast cells and peripheral blood basophils and compared its activity to that of rhIL-3, rhSCF (1 ng/ml to 1 microgram/ml) activated the release of histamine and PGD2 from mast cells isolated from human skin. Analysis by digital video microscopy indicated that purified human skin mast cells (84 +/- 5% pure) responded to rhSCF (0.1 to 1 microgram/ml) challenge with a rapid, sustained rise in intracellular Ca2+ levels that was accompanied by secretion of histamine. A brief preincubation (10 min) of mast cells with rhSCF (0.1 pg/ml to 1 ng/ml) significantly enhanced (100 +/- 35%) the release of histamine induced by anti-IgE (3 micrograms/ml), but was much less effective on IgE-mediated release of PGD2. In contrast, a short term incubation with rhSCF did not potentiate the secretion of histamine activated by substance P (5 microM). A 24-h incubation of mast cells with rhSCF did not affect the release of mediators induced by anti-IgE (3 micrograms/ml), probably due to receptor desensitization, rhSCF (1 ng/ml to 3 micrograms/ml) neither caused release of histamine or leukotriene C4 (LTC4) release from leukocytes of 14 donors, nor induced a rise in intracellular Ca2+ levels in purified (greater than 70%) basophils. Brief preincubation (10 min) of leukocytes with rhSCF (1 ng/ml to 3 micrograms/ml) caused an enhancement (69 +/- 11%) of anti-IgE-induced release of histamine that was significant at concentrations as low as 3 ng/ml (p less than 0.05), whereas it appeared less effective in potentiating IgE-mediated LTC4 release. In contrast, a prolonged incubation (24 h) with rhSCF (0.1 pg/ml to 100 ng/ml) did not enhance the release of histamine or LTC4 induced by anti-IgE (0.1 microgram/ml), whereas rhIL-3 (3 ng/ml) significantly potentiated the release of both mediators.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

12.
We have examined the changes in protein kinase C (PKC) which follow IgE-mediated activation of basophils. Exposure to 0.1 microgram/ml anti-IgE resulted in an increase in total cellular PKC (169 +/- 23% of control, histamine release (HR) = 33 +/- 7%, n = 12) which could be accounted for solely by the increase in membrane-associated PKC. These changes reached a maximum (280 +/- 48%) 1.0 min after challenge and declined to 190 +/- 38% after 5.0 min though histamine release was not complete until 5 to 10 min later. We found a good correlation between the increase in membrane-associated PKC and the eventual release of histamine (rs = 0.902). Donors whose basophils released less than 5% total histamine (n = 3, HR = 3 +/- 1%) showed a partial activation of PKC (173 +/- 18%) though much less than the remaining donors (increase in PKC = 346 +/- 59%, n = 9, HR = 43 +/- 7%). We observed no redistribution of cytosolic PKC at any time following exposure to anti-IgE. In contrast, 0.1 microgram/ml 2-O-tetradecanoyl-phorbol-13-acetate (HR = 36 +/- 3%, n = 3) promoted an increase in total cellular PKC, the loss of 31 +/- 4% of the cytosolic PKC and an 816 +/- 183% increase in membrane-associated PKC. Activation of PKC by anti-IgE was only partially dependent on extracellular calcium. In the absence of calcium, the increase in PKC was approximately 65% (n = 4) of that noted in the presence of 1mM calcium but these levels were sustained over much longer periods, failing to return to base line after 30 min. Higher than normal concentrations of calcium (5 to 10 mM) promoted rapid increases in PKC activity and accelerated the return to base line (back to prechallenge levels by 5 min). Suboptimal concentrations of anti-IgE (0.01 microgram/ml) attenuated the changes in membrane associated PKC and altered the kinetics of the response. The time required to reach maximum activity increased from 1.0 to 5.0 min with a corresponding decrease in the rate at which histamine was released. Higher concentrations of anti-IgE (1.0 microgram/ml) promoted a rapid increase in PKC (maximum increase in PKC = 501 +/- 59%, time = 0.5 min, HR = 28 +/- 2%) followed by an equally rapid return to base line levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Arachidonic acid metabolism in purified human lung mast cells   总被引:9,自引:0,他引:9  
Arachidonic acid metabolism has been explored in preparations of purified human lung mast cells prelabeled with arachidonic acid (AA). Cells were of 83 to greater than 96% purity, and each experiment was performed with four to six different preparations of mast cells. After overnight culture of the purified cells in the presence of 3H-AA, followed by extensive washing in buffer, mast cell uptake of labeled AA was 61.4 +/- 14.8 pmol/10(6) cells with 21 +/- 2.4% of the label in phospholipids, 73 +/- 2.1% in neutral lipids, and 3.6 +/- 0.8% as free AA. Analysis of the distribution of radioactivity in phospholipid classes revealed 51.4 +/- 5.5% of the label in phosphatidylcholine, 14.5 +/- 1.6% in phosphatidylinositol, 12.0 +/- 3.0% in phosphatidylethanolamine, and 9.1 +/- 2.4% in sphingomyelin, with the rest in other phospholipid classes. Challenge of these cells with an optimal concentration of anti-IgE led to the release of 20 +/- 4.0% of cellular histamine and to a reduction in labeled phosphatidylcholine and phosphatidylinositol to 75.5 +/- 8.8% and 84.2 +/- 4.5% of the control levels, respectively, (p less than 0.05); anti-IgE challenge produced no statistically significant change in the quantities of other labeled phospholipids. Activation of human lung mast cells with anti-IgE led to the release of 3.4 +/- 1.3% of the cellular 3H as AA and AA metabolites (1.5 +/- 0.6% as unmetabolized AA) in conjunction with 16 +/- 4.3% of the cellular histamine. Although activation of human lung mast cells with ionophore A23187 caused 70 +/- 1.1% histamine release, a similar quantity of AA and AA metabolites was released (a total of 4.0 +/- 0.8% with 2.3 +/- 1.5% as unmetabolized AA). Analysis of the released metabolites by liquid scintillation spectrometry after high performance liquid chromatography separation showed that approximately equal amounts of metabolites were produced after mast cell activation with anti-IgE and ionophore A23187. In this series of experiments approximately equal amounts of cyclooxygenase and lipoxygenase products were generated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

15.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

16.
Human mast cells, dispersed from lung tissue by proteolytic treatment and enriched to a purity of 23 to 68% by density-gradient centrifugation, were maintained ex vivo for up to 13 days when co-cultured with mouse skin-derived 3T3 fibroblasts in RPMI 1640 containing 10% fetal calf serum. The human mast cells were adherent to the fibroblast cultures within 2 to 4 hr after seeding, and after 7 days of co-culture were localized between the layers of fibroblasts. The cell surfaces of the mast cells and the fibroblasts did not form tight junctions, but rather approached within 20 nm of each other. The co-cultured mast cells did not divide; they maintained their cellular content of histamine and TAMe esterase and resembled in vivo mast cells in that their secretory granules exhibited scroll patterns and their nuclei were oval. Both the freshly isolated and the co-cultured mast cells responded to activation with anti-human IgE by exocytosing histamine and generating and releasing arachidonic acid metabolites. When freshly isolated mast cells were activated immunologically, they exocytosed 38 +/- 8% of their total histamine content and released 28 +/- 1.9 ng (mean +/- range, n = 2) of immunoreactive equivalents of prostaglandin D2 (PGD2) per microgram of total cellular histamine, but did not generate significant amounts of either leukotriene C4 (LTC4) or leukotriene B4 (LTB4). The 1-wk co-cultured mast cells, on the other hand, exocytosed 43 +/- 2.4% of their total histamine content, and released 86 +/- 10, 43 +/- 20, and 5.2 +/- 5.2 ng (mean +/- SD, n = 4) of immunoreactive equivalents of PGD2, LTC4, and LTB4, respectively, per microgram of histamine. Thus, human lung-derived mast cells can be maintained ex vivo when co-cultured with fibroblasts, and, when treated with anti-IgE, they metabolize arachidonic acid via both the cyclooxygenase and the 5-lipoxygenase pathways.  相似文献   

17.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

18.
The aim of the study was to analyse the effect of interleukin-4 (IL-4) on allergen and anti-IgE mediated histamine release from basophils and human skin mast cells and to assess whether soluble recombinant interleukin-4 receptor (sIL4R) can inhibit these effects. Anti-IgE stimulated histamine release from peripheral blood basophils and mast cells of atopic donors was enhanced after preincubation with IL-4, whereas after preincubation with sIL-4R it was inhibited. These effects were even more pronounced when samples were stimulated with a clinically relevant allergen. In IL-4 preincubated skin mast cells, there was a similar enhancement of anti-IgE stimulated histamine release, which could again be inhibited by sIL-4R. The effects of IL-4 and sIL4R were dose- and time-dependent. Mice sensitized to ovalbumin and treated with soluble recombinant murine sIL-4R showed significantly reduced immediate-type cutaneous hypersensitivity responses compared with untreated mice. These in vivo effects were IgE independent, since there were no significant differences in total and allergen specific IgE/IgG1 antibody titres between treated and untreated mice. This indicates that IL4 exerts priming effects on histamine release by effector cells of the allergic response and that these effects are potently antagonized by soluble IL-4R both in vitro and in vivo.  相似文献   

19.
The effect of pertussis toxin on mediator release from human basophils   总被引:4,自引:0,他引:4  
We have found that basophils (n = 9) treated with pertussis toxin (1.0 microgram/ml) fail to respond to a subsequent challenge with either 1.0 microM f-Met peptide (p less than 0.0005) or 0.24 microgram/ml of C5a (p less than 0.0005) although their responses to anti-IgE (0.1 microgram/ml) and A23187 (1.0 microgram/ml) were unaltered. These results were confirmed in purified (average purity = 89 +/- 3%) basophils (n = 4). Leukotriene C4 release was also reduced to 15 +/- 5% of control (p less than 0.005) when pertussis toxin-treated basophils were exposed to 1.0 microM f-Met peptide, although no inhibition was noted when anti-IgE or A23187 were used as the stimuli. The effect of pertussis toxin on basophils appears to be independent of the presence of contaminating mononuclear cells. We found that pertussis toxin inhibited f-Met peptide-induced histamine release regardless of the magnitude of the stimulus (0.01 microM to 1.0 microM f-Met peptide), although anti-IgE-induced release was unaffected over a dose-response curve. The effect of pertussis toxin was found to be both time- and concentration-dependent. The maximum effects were obtained after a 3-hr incubation with 1 microgram/ml of toxin. Lower (0.01 to 0.05 microgram/ml) concentrations of toxin or shorter (30 to 60 min) incubation periods did not significantly (p greater than 0.05) inhibit mediator release.  相似文献   

20.
Mast cells and basophils involved in allergic responses do not have clonotypic Ag receptors. However, they can acquire Ag specificity through binding of Ag-specific IgE to FcepsilonRI expressed on their surface. Previous studies demonstrated that IgE binding induced the stabilization and accumulation of FcepsilonRI on the cell surface and resulted in up-regulation of FcepsilonRI. In this study we have further analyzed the maintenance of IgE-mediated memory in mast cells and basophils in vivo by comparing kinetics of serum IgE levels, FcepsilonRI expression, and ability to induce systemic anaphylaxis. A single i.v. injection of trinitrophenyl-specific IgE induced 8-fold up-regulation of FcepsilonRI expression on peritoneal mast cells in B cell-deficient (micro m(-/-)) mice. Serum IgE levels became undetectable by day 6, but the treatment of mice with anti-IgE mAb induced a significant drop in body temperature on days 14, 28, and 42. The administration of trinitrophenyl -BSA, but not BSA, in place of anti-IgE mAb gave similar results, indicating the Ag specificity of the allergic response. This long term maintenance of Ag-specific reactivity in the allergic response was also observed in normal mice passively sensitized with IgE even though the duration was shorter than that in B cell-deficient mice. The appearance of IgE with a different specificity did not interfere with the maintenance of IgE-mediated memory of mast cells and basophils. These results suggest that IgE-mediated stabilization and up-regulation of FcepsilonRI enables mast cells and basophils not only to acquire Ag specificity, but also to maintain memory in vivo for lengthy periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号