首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the process of tetracycline base crystallization showed that with an increase in the rate of pH, temperature and mixed rotation changes, the specific surface of the crystalline precipitate increased with a simultaneous decrease in the bulk weight, looseness and volume density of the powder. The residual content of tetracycline in the mother solution decreased. The level of the effect of various parameters on the final results was different.  相似文献   

2.
Since such factors as temperature and time of the process had a significant effect on the residual activity of the mother solution during crystallization of tetracyclines, it was necessary to study the effect of the above factors on the process for determination of the crystallization optimal conditions. The experimental data provided creation of the regression equations and the curves for similar levels of the main parameters for tetracycline and oxytetracycline were calculated. The lowest values of the mother solution activity within the ranges tested were observed at the temperature of 2 degrees and the time of 3 hours.  相似文献   

3.
Such factors as the rate of the changes in pH, temperature, mixer speed and the nature of the anions present in the solution has a significant effect on the indices of oxytetracycline dihydrate crystallization, i. e. residual content of the antibiotic in the mother solution and the specific surface of the crystalls. In this connection the effect of the above factors on the main indices of the process were studied. On the basis of the experimental data dependences were found which provided determination of the crystallization conditions securing the process indices.  相似文献   

4.
Extracellular radicals produced by Trametes versicolor under quinone redox cycling conditions can degrade a large variety of pollutant compounds, including trichloroethylene (TCE). This study investigated the effect of the agitation speed and the gas–liquid phase volume ratio on TCE degradation using central composite design (CCD) methodology for a future scale-up to a reactor system. The agitation speed ranged from 90 to 200 rpm, and the volume ratio ranged from 0.5 to 4.4. The results demonstrated the important and positive effect of the agitation speed and an interaction between the two factors on TCE degradation. Although the volume ratio did not have a significant effect if the agitation speed value was between 160 and 200 rpm, at lower speed values, the specific pollutant degradation was clearly more extensive at low volume ratios than at high volume ratios. The fitted response surface was validated by performing an experiment using the parameter combination in the model that maximised TCE degradation. The results of the experiments carried out using different biomass concentrations demonstrated that the biomass concentration had a positive effect on pollutant degradation if the amount of biomass present was lower than 1.6 g dry weight l−1. The results show that the maximum TCE degradation was obtained at the highest speed (200 rpm), gas–liquid phase volume ratio (4.4), and a biomass concentration of 1.6 g dry weight l−1.  相似文献   

5.
The rate of tetracycline hydrochloride transfer into solution from capsules containing different auxiliary substances was studied. It was shown that the dispersity level of tetracycline hydrochloride powder had no significant effect on the capsule disintegration and the rate of the antibiotic transfer into solution. The effect of the auxiliary substance composition on the capsule disintegration and the rate of the antibiotic dissolution was shown. The rate of tetracycline liberation from the capsules containing tetracycline hydrochloride without additives or the antibiotic in combination with 23 per cent of lactose was 4 to 6 times higher than that from the capsules with magnesium carbonate or calcium phosphate as the auxiliary substances.  相似文献   

6.
The results of the experiments on determination of the effect of aeration and agitation conditions on biosynthesis of tetracycline in the apparatus of semi-production capacity are discussed. It was shown that the antibiotic production level was not connected with the rate of oxygen solution expressed in the sulphite numbers, i.e. this parameter cannot be used as a scaling-up criterion. Accumulation of the antibiotic in the fermentation broth depended on the volume of the air supplied for aeration. It was determined that the level of CO2 dissolved in the fermentation broth did not reach the values having an inhibitory effect on the biosynthetic process.  相似文献   

7.
Control of nucleation in the crystallization of lysozyme.   总被引:2,自引:1,他引:1  
This work investigates the influence of storage of lysozyme in solution on its crystallization. The crystallization of hen egg-white lysozyme exhibits a storage effect (aging) that depends on the length of time the lysozyme solution is stored, after dissolving from freeze-dried powder, before being brought to crystallization conditions. The number of crystals obtained increases, while their size decreases, as the solution ages. Observations suggest that this effect is due to the presence of fungi that multiply in the stored protein solution. This aging effect was used to control nucleation and determine the number and size of lysozyme crystals to be formed in a given sample.  相似文献   

8.
The present work describes the enzymatic synthesis and simultaneous crystallization of the dipeptide AcPheLeuNH(2) by alpha-chymotrypsin in a reversed micellar system of tetradecyltrimethylammonium bromide (TTAB)/heptane/octanol/carbonate buffer. The low solubility of the dipeptide in the micellar solution led to the formation and growth of needle-like crystals during the synthesis as soon as supersaturation was achieved. The crystallization process then followed a typical pattern, proceeding in three phases: nucleation, de-supersaturation, and re-equilibrium of saturation. Crystallization was followed by visual observation with an optical microscope, and the increase of crystal number and size was confirmed. Experiments showed that the supersaturation concentration decreases with the addition of AcPheLeuNH(2) seeds before the reaction, and also with a decrease of the stirring speed. It was also observed that the increase of both seed concentration and stirring advances the start of crystallization, so that the dipeptide is more quickly removed from solution. The consequent decrease in its loss through hydrolysis causes an increase in its yield. Both stirring and seeding could constitute important generic strategies for promoting crystallization of more soluble dipeptides during their synthesis in similar reversed micellar systems.  相似文献   

9.
Polarimetry is used for continuous online monitoring of optical resolution by preferential crystallization. In combination with refractometry the liquid phase composition is determined, allowing one to follow the resolution progress quantitatively. The measurement techniques were calibrated up to relatively high solution concentrations and combined with the crystallizer. The resolution of DL-threonine was performed by preferential crystallization experiments in aqueous solution varying several process parameters like supersaturation, seed amount, initial enantiomeric excess, and scale. The resolution progress can be conveniently described by profiles of the optical rotation (polarimetric signal) and the crystallization pathway in the corresponding ternary phase diagram. The method outlined is applicable for dynamic process optimization and control purposes in "quasi-continuous" chiral separation processes.  相似文献   

10.
Trypsin crystallization by membrane-based techniques   总被引:4,自引:0,他引:4  
To grow protein crystals is not an easy task; moreover, if we need to grow protein crystals with controlled shape, size, and size distribution, depending on their application, the mission becomes even harder. Membrane crystallization has been recognized as an interesting tool for growing protein crystals with enhanced crystallization kinetics, both in static and in forced solution flow configuration, without detrimental effects on crystal quality. In the present work, we have studied the membrane crystallization process of benzamidine inhibited trypsin from bovine pancreas (BPT), with ammonium sulphate (dissolved in Tris-HCl buffer, 0.1 M, pH 8.5), as precipitant agent. We have demonstrated that, by using the membrane crystallization technique, BPT crystals can be obtained in 24-48 h, in static configuration, and in 4-7 days, in a forced solution flow system, depending on the experimental conditions. Furthermore, the kinetics of BPT crystallization have been modulated, to control the morphological characteristics of the crystals produced, by an accurate selection of the operative parameters involved in the process. The active membrane surface and the flow rate of extraction solvent in quiescent configuration, and the solution velocity in forced convection solution experiments, were the parameters investigated. In this respect, membrane crystallization techniques have been assessed as an interesting way for growing proteins, and more specifically enzyme crystals, with high control on the final properties of the crystalline material produced, with potential fundamental implication in the field of structural biology and biotechnology.  相似文献   

11.
To maximize the productivity of virginiamycin, which is a commercially important antibiotic as an animal feed additive, an empirical approach was employed in the batch culture of Streptomyces virginiae. Here, the effects of dissolved oxygen (DO) concentration and agitation speed on the maximum cell concentration at the production phase, as well as on the productivity of virginiamycin, were investigated. To maintain the DO concentration in the fermentor at a certain level, either the agitation speed or the inlet oxygen concentration of the supply gas was manipulated. It was found that increasing the agitation speed had a positive effect on the antibiotic productivity independent of the DO concentration. The optimum DO concentration, agitation speed and addition of an autoregulator, virginiae butanolide C (VB-C), were determined to maximize virginiamycin productivity. The optimal strategy was to start the cultivation at 450 rpm and to continue until the DO concentration reached 80%. After reaching 80%, the DO concentration was maintained at this level by changing the agitation speed, up to a maximum of 800 rpm. The addition of an optimal amount of the autoregulator VB-C in an experiment resulted in the maximal production of virginiamycin M (399 mg/l), which was about 1.8-fold those obtained previously. Received: 13 July 1998 / Received revision: 19 August 1998 / Accepted: 13 September 1998  相似文献   

12.
An important factor in the crystallization, and subsequent structural determination, of integral membrane proteins is the ability to produce a stable and monodisperse solution of the protein. Obtaining the correct purification detergent to achieve this can be laborious and is often serendipitous. In this study, high-throughput methods are used to analyze the suitability of eight different detergents on the stability of 12 inner transmembrane proteins from Escherichia coli. The best results obtained from the small-scale experiments were scaled up, the aggregation state of the proteins assessed, and all monodisperse protein solutions entered into crystallization trials. This resulted in preliminary crystallization hits for three inner membrane proteins: XylH, PgpB and YjdL and this study reports the methods, purification procedures and crystallization conditions used to achieve this.  相似文献   

13.
《Molecular membrane biology》2013,30(7-8):445-453
Abstract

An important factor in the crystallization, and subsequent structural determination, of integral membrane proteins is the ability to produce a stable and monodisperse solution of the protein. Obtaining the correct purification detergent to achieve this can be laborious and is often serendipitous. In this study, high-throughput methods are used to analyze the suitability of eight different detergents on the stability of 12 inner transmembrane proteins from Escherichia coli. The best results obtained from the small-scale experiments were scaled up, the aggregation state of the proteins assessed, and all monodisperse protein solutions entered into crystallization trials. This resulted in preliminary crystallization hits for three inner membrane proteins: XylH, PgpB and YjdL and this study reports the methods, purification procedures and crystallization conditions used to achieve this.  相似文献   

14.
E D Atkins  W Mackie 《Biopolymers》1972,11(8):1685-1691
The relationship between crystallization and the annealing process is well established in the synthetic polymer field. This relationship appears to have been somewhat neglected in studies on biopolymers. Results are presented to show the effect of both humidity and temperature in promoting structural changes in polysaccharide system. Three different polysaccharides have been used as examples of how crystallization may be speeded up by annealing at elevated temperatures.  相似文献   

15.
The data on the effect of the aeration and agitation conditions on biosynthesis of oleandomycin in 0.75, 3 and 50 m3 apparatus are presented. The relationship between the biosynthetic parameters, oxygen dissolution rate and specific power consumption for agitation was studied. It was shown that the values of the specific power consumption for agitation were not acceptable for scaling up the process of oleandomycin biosynthesis.  相似文献   

16.
Protein purification by bulk crystallization: the recovery of ovalbumin   总被引:4,自引:0,他引:4  
Crystallization is used industrially for the recovery and purification of many inorganic and organic materials. However, very little is reported on the application of bulk crystallization for proteins. In this work, ovalbumin was selected as a model protein to investigate the feasibility of using bulk crystallization for the recovery and purification of proteins. A stirred 1-L seeded batch crystallizer was used to obtain the crystal growth kinetics of ovalbumin in ammonium sulfate solutions at 30 degrees C. The width of the metastable region, in which crystal growth can occur without any nucleation, is equivalent to a relative supersaturation of about 20. The bulk crystallizations were undertaken within this range (using initial relative supersaturations less than 10) and nucleation was not observed. The ovalbumin concentration in solution was measured by UV absorbance and checked by crystal content measurement. Crystal size distributions were measured both by using a Malvern Mastersizer and by counting crystals through a microscope. The crystal growth rate was found to have a second-order dependence upon the ovalbumin supersaturation. While there is no discernible effect of ammonium sulfate concentration at pH 4.90, there is a slight effect at higher pH values. Overall the effect of ammonium sulfate concentration is small compared to the effect of pH, for which there is a 10-fold increase in the growth rate constant, k(Gsigma) over the range pH 4.6-5.4. To demonstrate the degree of purification which can be achieved by bulk crystallization, ovalbumin was crystallized from a solution containing conalbumin (80,000 Da) and lysozyme (14, 600 Da). After one crystallization and a crystal wash, ovalbumin crystals were produced with a protein purity greater than 99%. No contamination by the other proteins was observed when using overloaded sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie blue stain and only trace amounts of lysozyme were observed using a silver stain. The presence of these other proteins in solution did not effect the crystal growth rate constant, k(Gsigma). The study demonstrates the feasibility of using bulk crystallization for the recovery and purification of ovalbumin. It should be readily applicable to other protein systems. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Methanol is a commonly used acyl acceptor for lipase-driven biodiesel production, but a high concentration of methanol is detrimental for lipase activity. To overcome this drawback, a simple fed-batch process was developed by optimization of the methanol feeding strategy and reaction conditions. For the feeding strategy, an equal volume of pure methanol was fed twice with specified time intervals into a reactor initially containing a 1:1 molar ratio of soybean oil to methanol in order to adjust the net molar ratio of the oil to methanol to 1:3. In contrast with the batch reaction, a higher agitation speed in the fed-batch process elevated the conversion yield of soybean oil to biodiesel. An agitation speed of 600 rpm and a reaction temperature of 70°C were chosen as the optimal environmental conditions. Residual lipase activities for the fed-batch operation at 40 ∼ 70°C and 600 rpm were 7.1 ± 1.4 times higher than that of the batch method at 40°C with the same agitation speed, indicating that methanol feeding can prevent significant deactivation of lipase. Finally, two times feeding methanol at 2 and 6 hr resulted in a biodiesel productivity of 10.7%/h and 94.9% final conversion yield under the optimal conditions.  相似文献   

18.
Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q p for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l?1 in 48 h with the yield of 0.051 g g?1 by applying this strategy, which were 20.5 and 21.4 % over the best results controlled by constant agitation speeds.  相似文献   

19.
Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL‐scale vapor diffusion experiments for structure determination by X‐ray diffraction. Little systematic know‐how exists for technical‐scale protein crystallization in stirred vessels. In this study, the Fab‐fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred‐tank reactor on a 6 mL‐scale. A four times faster onset of crystallization of the Fab‐fragment was observed compared to the non‐agitated 10 µL‐scale. Further studies on a liter‐scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale‐up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale‐up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred‐tank reactors on a 6 mL‐, 100 mL‐, and 1 L‐scale. A comparable crystallization behavior was achieved in all stirred‐tank reactors when the maximum local energy dissipation was kept constant for scale‐up. A maximum local energy dissipation of 2.2 W kg?1 was identified to be the optimum for lysozyme crystallization at all scales under study. Biotechnol. Bioeng. 2013; 110: 1956–1963. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Blood absorption of tetracycline hydrochloride of various dispersity levels from capsules containing tetracycline alone or in combination with additives, such as magnesium carbonate and calcium salts was studied on humans. It was found that higher dispersity levels of tetracycline hydrochloride powder in capsules was not accompanied by increased blood absorption of the antibiotic. Addition of magnesium carbonate and calcium salts to the antibiotic in the process of capsulation markedly retarded the blood absorption. Clear correlation between the antibiotic dissolution rate in vitro and intensity of its blood absorption in volunteers was shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号