首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.  相似文献   

2.
The abundance of heterotrophic bacteria and viruses, as well as rates of viral production and virus-mediated mortality, were measured in Discovery Passage and the Strait of Georgia (British Columbia, Canada) along a gradient of tidal mixing ranging from well mixed to stratified. The abundances of bacteria and viruses were approximately 10(6) and 10(7) mL(-1), respectively, independent of mixing regime. Viral production estimates, monitored by a dilution technique, demonstrated that new viruses were produced at rates of 10(6) and 10(7) mL(-1)h(-1) across the different mixing regimes. Using an estimated burst size of 50 viruses per lytic event, ca. 19 to 27% of the standing stock of bacteria at the stratified stations and 46 to 137% at the deep-mixed stations were removed by viruses. The results suggest that mixing of stratified waters during tidal exchange enhances virus-mediated bacterial lysis. Consequently, viral lysis recycled a greater proportion of the organic carbon required for bacterial growth under non-steady-state compared to steady-state conditions.  相似文献   

3.
Viral activity in two contrasting lake ecosystems   总被引:3,自引:0,他引:3  
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.  相似文献   

4.
In microcosm experiments, we simultaneously tested the effects of increased numbers of deposit-feeding macrofauna (chironomids, oligochaetes and cladocerans) on the standing stock, activities and interactions of heterotrophic bacteria, viruses, and bacterivorous protozoa (heterotrophic nanoflagellates and ciliates) in the aerobic layer of a silty littoral freshwater sediment. On average, bacterial secondary production was stimulated between 11 and 29% by all macrofaunal groups compared to control experiments without macrofauna addition. Bacterial standing stock increased significantly by 8 and 13% in case of chironomids and cladocerans, respectively. Oligochaetes and chironomids produced significant negative effects on viral abundance while the results with cladocerans were inconsistent. The addition of oligochaetes and chironomids resulted in a significant decrease by on average 68 and 32% of viral decay rates, respectively, used as a measure of viral production. The calculated contribution of virus-induced lysis to benthic bacterial mortality was low, with 2.8 to 11.8% of bacterial secondary production, and decreased by 39 to 81% after the addition of macrofauna compared to the control. The abundances of heterotrophic nanoflagellates were significantly reduced by 20% by all tested macrofauna groups, while ciliates showed inconsistent results. The importance of heterotrophic nanoflagellate grazing on benthic bacteria was very low (<1% of bacterial secondary production) and was further reduced by elevated numbers of macrofauna. Thus, the selected deposit feeding macrofauna groups seem to have several direct and indirect and partly antagonistic effects on the benthic bacterial compartment through the enhancement of bacterial production and the reduction of virus-induced cell lysis and protozoan grazing.  相似文献   

5.
Viral Activity in Two Contrasting Lake Ecosystems   总被引:8,自引:3,他引:5       下载免费PDF全文
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium−1, respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (MPavin = 37.7%, MAydat = 18.5%) was nearly always more than the production removed by viral lysis (MPavin = 16.2%, MAydat = 19%) or ciliate grazing (MPavin = 2.7%, MAydat = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.  相似文献   

6.
The effects of viral lysis and heterotrophic nanoflagellate (HNF) grazing on bacterial mortality were estimated in a eutrophic lake (Lake Plusssee in northern Germany) which was separated by a steep temperature and oxygen gradient into a warm and oxic epilimnion and a cold and anoxic hypolimnion. Two transmission electron microscopy-based methods (whole-cell examination and thin sections) were used to determine the frequency of visibly infected cells, and a model was used to estimate bacterial mortality due to viral lysis. Examination of thin sections also showed that between 20.2 and 29.2% (average, 26.1%) of the bacterial cells were empty (ghosts) and thus could not contribute to viral production. The most important finding was that the mechanism for regulating bacterial production shifted with depth from grazing control in the epilimnion to control due to viral lysis in the hypolimnion. We estimated that in the epilimnion viral lysis accounted on average for 8.4 to 41.8% of the summed mortality (calculated by determining the sum of the mortalities due to lysis and grazing), compared to 51.3 to 91.0% of the summed mortality in the metalimninon and 88.5 to 94.2% of the summed mortality in the hypolimnion. Estimates of summed mortality values indicated that bacterial production was controlled completely or almost completely in the epilimnion (summed mortality, 66.6 to 128.5%) and the hypolimnion (summed mortality, 43.4 to 103.3%), whereas in the metalimnion viral lysis and HNF grazing were not sufficient to control bacterial production (summed mortality, 22.4 to 56.7%). The estimated contribution of organic matter released by viral lysis of cells into the pool of dissolved organic matter (DOM) was low; however, since cell lysis products are very likely labile compared to the bulk DOM, they might stimulate bacterial production. The high mortality of bacterioplankton due to viral lysis in anoxic water indicates that a significant portion of bacterial production in the metalimnion and hypolimnion is cycled in the bacterium-virus-DOM loop. This finding has major implications for the fate and cycling of organic nutrients in lakes.  相似文献   

7.
In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h−1 (average, 0.033 h−1), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF−1 h−1) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate−1 h−1). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5–19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.  相似文献   

8.
As agents of mortality, viruses and nanoflagellates impact on picoplankton populations. We examined the differences in interactions between these compartments in two French Atlantic bays. Microbes, considered here as central actors of the planktonic food web, were first monitored seasonally in Arcachon (2005) and Marennes‐Oléron (2006) bays. Their dynamics were evaluated to categorize trophic periods using the models of Legendre and Rassoulzadegan as a reference framework. Microbial interactions were then compared through 48 h batch culture experiments performed during the phytoplankton spring bloom, identified as herbivorous in Marennes and multivorous in Arcachon. Marennes was spatially homogeneous compared with Arcachon. The former was potentially more productive, featuring a large number of heterotrophic pathways, while autotrophic mechanisms dominated in Arcachon. A link was found between viruses and phytoplankton in Marennes, suggesting a role of virus in the regulation of autotroph biomass. Moreover, the virus–bacteria relation was weaker in Marennes, with a bacterial lysis potential of 2.6% compared with 39% in Arcachon. The batch experiments (based on size‐fractionation and viral enrichment) revealed different microbial interactions that corresponded to the spring‐bloom trophic interactions in each bay. In Arcachon, where there is a multivorous web, flagellate predation and viral lysis acted in an opposite way on picophytoplankton. When together they both reduced viral production. Conversely, in Marennes (herbivorous web), flagellates and viruses together increased viral production. Differences in the composition of the bacterial community composition explained the combined flagellate‐virus effects on viral production in the two bays.  相似文献   

9.
We have investigated the ecology of viruses in Lake Bourget (France) from January to August 2008. Data were analysed for viral and bacterial abundance and production, viral decay, frequency of lysogenic cells, the contribution of bacteriophages to prokaryotic mortality and their potential influence on nutrient dynamics. Analyses and experiments were conducted on samples from the epilimnion (2 m) and the hypolimnion (50 m), taken at the reference site of the lake. The abundance of virus‐like particles (VLP) varied from 3.4 × 107 to 8.2 × 107 VLP ml?1; with the highest numbers and virus‐to‐bacterium ratio (VBR = 69) recorded in winter. Viral production varied from 3.2 × 104 VLP ml?1 h?1 (July) to 2 × 106 VLP ml?1 h?1 (February and April), and production was lower in the hypolimnion. Viral decay rate reached 0.12–0.15 day?1, and this parameter varied greatly with sampling date and methodology (i.e. KCN versus filtration). Using transmission electron microscopy (TEM) analysis, viral lysis was responsible for 0% (January) to 71% (February) of bacterial mortality, while viral lysis varied between 0% (April) and 53% (January) per day when using a modified dilution approach. Calculated from viral production and burst size, the virus‐induced bacterial mortality varied between 0% (January) and 68% (August). A weak relationship was found between the two first methods (TEM versus dilution approach). Interestingly, flow cytometry analysis performed on the dilution experiment samples revealed that the viral impact was mostly on high DNA content bacterial cells whereas grazing, varying between 8.3% (June) and 75.4% (April), was reflected in both HDNA and LDNA cells equally. The lysogenic fraction varied between 0% (spring/summer) and 62% (winter) of total bacterial abundance, and increased slightly with increasing amounts of mitomycin C added. High percentages of lysogenic cells were recorded when bacterial abundance and activity were the lowest. The calculated release of carbon and phosphorus from viral lysis reached up to 56.5 µgC l?1 day?1 (assuming 20 fgC cell?1) and 1.4 µgP l?1 day?1 (assuming 0.5 fgP cell?1), respectively, which may represent a significant fraction of bacterioplankton nutrient demand. This study provides new evidence of the quantitative and functional importance of the virioplankton in the functioning of microbial food webs in peri‐alpine lakes. It also highlights methodologically dependent results.  相似文献   

10.
Bacterial mortality was studied using two complementary methods between 2002 and 2004 in the two main basins (north and south) of Lake Tanganyika. The disappearance of radioactivity from the DNA of natural assemblages of bacteria previously labeled with tritiated thymidine was used to estimate the mortality due to grazing by predators (72%) and due to the cell lysis (28%). Measurements of ingestion rate of bacteria by protozoa using fluorescent micro-particles yielded protozoan grazing rates similar to those provided by the thymidine method, and showed that heterotrophic nano-flagellates were responsible for most of the grazing pressure on the bacterial community of the pelagic zone (92-99%). Bacterial cell lysis was the second process involved in bacterial mortality, ranking before ciliate grazing. Overall, bacterial mortality was balanced with bacterial production. With regard to the assessment of the trophic role of bacteria, it was estimated that c. 5-8% of the organic carbon taken up by bacteria was converted into protozoan biomass and was thus available for metazoans.  相似文献   

11.
The significance of viruses to mortality in aquatic microbial communities   总被引:24,自引:0,他引:24  
A variety of approaches including enumeration of visibly infected microbes, removal of viral particles, decay of viral infectivity, and measurements of viral production rates have been used to infer the impact of viruses on microbial mortality. The results are surprisingly consistent and suggest that, on average, about 20% of marine heterotrophic bacteria are infected by viruses and 10–20% of the bacterial community is lysed daily by viruses. The effect of viruses on phytoplankton is less certain, but ca. 3% of Synechococcus biomass may be lysed daily. The fraction of primary productivity this represents depends upon the relative biomass and growth rate of Synechococcus. Virus enrichment experiments suggest that the productivity of eukaryotic phytoplankton would be ca. 2% higher in the absence of viruses. Overall, probably about 2–3% of primary productivity is lost to viral lysis. There is considerable variation about these estimates; however, they represent a starting point for incorporating viral-mediated processes into aquatic ecosystem models.  相似文献   

12.
The grazing and lysis mortalities of planktonic bacteria were estimated using the modified dilution method and respiratory quinone (RQ) analysis in mesotrophic Lake Biwa, Japan. The planktonic bacterial assemblages in the lake consisted of various RQ subgroups with different growth and mortality rates. The sum of total bacterial mortalities due to protistan grazing and viral lysis accounted for 96.6 % (range 89.0–107.2 %) of daily total bacterial production. This is the first report that successfully demonstrates a balanced relationship between bacterial production and losses using the modified dilution method in a lake. The growth rates of ubiquinone (UQ)-containing bacteria were faster than those of menaquinone-containing bacteria. Especially the dominant and fastest growing bacterial groups in the present study were the bacterial groups containing UQ-8 or UQ-10. The sum of their production and loss accounted for 60 % of carbon fluxes within the microbial loop. Thus, a large portion of the carbon cycling through the bacterial community in Lake Biwa can be explained by the carbon fluxes through dominant bacterial groups.  相似文献   

13.
The relative importance of viral lysis and bacterivory as causes of bacterial mortality were estimated. A laboratory experiment was carried out to check the kind of control that viruses could exert over the bacterial assemblage in a non-steady-state situation. Virus-like particles (VLP) were determined by using three methods of counting (DAPI [4′,6-diamidino-2-phenylindole] staining, YOPRO staining, and transmission electron microscopy). Virus counts increased from the beginning until the end of the experiment. However, different methods produced significantly different results. DAPI-stained VLP yielded the lowest numbers, while YOPRO-stained VLP yielded the highest numbers. Bacteria reached the maximal abundance at 122 h (3 × 107 bacteria ml−1), after the peak of chlorophyll a (80 μg liter−1). Phototrophic nanoflagellates followed the same pattern as for chlorophyll a. Heterotrophic nanoflagellates showed oscillations in abundance throughout the experiment. The specific bacterial growth rate increased until 168 h (2.6 day−1). The bacterivory rate reached the maximal value at 96 hours (0.9 day−1). Bacterial mortality due to viral infection was measured by using two approaches: measuring the percentage of visibly infected bacteria (%VIB) and measuring the viral decay rates (VDR), which were estimated with cyanide. The %VIB was always lower than 1% during the experiment. VDR were used to estimate viral production. Viral production increased 1 order of magnitude during the experiment (from 106 to 107 VLP ml−1 h−1). The percentage of heterotrophic bacterial production consumed by bacterivores was higher than 60% during the first 4 days of the experiment; afterwards, this percentage was lower than 10%. The percentage of heterotrophic bacterial production lysed by viruses as assessed by the VDR reached the highest values at the beginning (100%) and at the end (50%) of the experiment. Comparing both sources of mortality at each stage of the bloom, bacterivory was found to be higher than viral lysis at days 2 and 4, and viral lysis was higher than bacterivory at days 7 and 9. A balance between bacterial losses and bacterial production was calculated for each sampling interval. At intervals of 0 to 2 and 2 to 4 days, viral lysis and bacterivory accounted for all the bacterial losses. At intervals of 4 to 7 and 7 to 9 days, bacterial losses were not balanced by the sources of mortality measured. At these time points, bacterial abundance was about 20 times higher than the expected value if viral lysis and bacterivory had been the only factors causing bacterial mortality. In conclusion, mortality caused by viruses can be more important than bacterivory under non-steady-state conditions.  相似文献   

14.
The effects of viral lysis and heterotrophic nanoflagellate (HNF) grazing on bacterial mortality were estimated in a eutrophic lake (Lake Plußsee in northern Germany) which was separated by a steep temperature and oxygen gradient into a warm and oxic epilimnion and a cold and anoxic hypolimnion. Two transmission electron microscopy-based methods (whole-cell examination and thin sections) were used to determine the frequency of visibly infected cells, and a model was used to estimate bacterial mortality due to viral lysis. Examination of thin sections also showed that between 20.2 and 29.2% (average, 26.1%) of the bacterial cells were empty (ghosts) and thus could not contribute to viral production. The most important finding was that the mechanism for regulating bacterial production shifted with depth from grazing control in the epilimnion to control due to viral lysis in the hypolimnion. We estimated that in the epilimnion viral lysis accounted on average for 8.4 to 41.8% of the summed mortality (calculated by determining the sum of the mortalities due to lysis and grazing), compared to 51.3 to 91.0% of the summed mortality in the metalimninon and 88.5 to 94.2% of the summed mortality in the hypolimnion. Estimates of summed mortality values indicated that bacterial production was controlled completely or almost completely in the epilimnion (summed mortality, 66.6 to 128.5%) and the hypolimnion (summed mortality, 43.4 to 103.3%), whereas in the metalimnion viral lysis and HNF grazing were not sufficient to control bacterial production (summed mortality, 22.4 to 56.7%). The estimated contribution of organic matter released by viral lysis of cells into the pool of dissolved organic matter (DOM) was low; however, since cell lysis products are very likely labile compared to the bulk DOM, they might stimulate bacterial production. The high mortality of bacterioplankton due to viral lysis in anoxic water indicates that a significant portion of bacterial production in the metalimnion and hypolimnion is cycled in the bacterium-virus-DOM loop. This finding has major implications for the fate and cycling of organic nutrients in lakes.  相似文献   

15.
Population dynamics in the microbial food web are influenced by resource availability and predator/parasitism activities. Climatic changes, such as an increase in temperature and/or UV radiation, can also modify ecological systems in many ways. A series of enclosure experiments was conducted using natural microbial communities from a Mediterranean lagoon to assess the response of microbial communities to top-down control [grazing by heterotrophic nanoflagellates (HNF), viral lysis] and bottom-up control (nutrients) under various simulated climatic conditions (temperature and UV-B radiations). Different biological assemblages were obtained by separating bacteria and viruses from HNF by size fractionation which were then incubated in whirl-Pak bags exposed to an increase of 3°C and 20% UV-B above the control conditions for 96 h. The assemblages were also provided with an inorganic and organic nutrient supply. The data show (i) a clear nutrient limitation of bacterial growth under all simulated climatic conditions in the absence of HNF, (ii) a great impact of HNF grazing on bacteria irrespective of the nutrient conditions and the simulated climatic conditions, (iii) a significant decrease in burst size (BS) (number of intracellular lytic viruses per bacterium) and a significant increase of VBR (virus to bacterium ratio) in the presence of HNF, and (iv) a much larger temperature effect than UV-B radiation effect on the bacterial dynamics. These results show that top-down factors, essentially HNF grazing, control the dynamics of the lagoon bacterioplankton assemblage and that short-term simulated climate changes are only a secondary effect controlling microbial processes.  相似文献   

16.
Spatial distribution of planktonic viral particles (virioplankton) and mortality of heterotrophic bacteria caused by viral lysis were studied in the eutrophic Ivan’kovskoe and mesotrophic Uglichskoe reservoirs (the Upper Volga). During the summer peak of phytoplankton, the number of viral particles was higher in the Ivan’kovskoe Reservoir ((55.1 ± 9.5) × 106 ml−1 on average) than in the Uglichskoe Reservoir ((42.9 ± 5.1) × 106 ml−1 on average). The ratio of viral to bacterial abundances ranged from 2.5 to 7.0. The average number of mature phages in infected heterotrophic bacteria varied from 17 to 109 particles/cell. Most of the infected bacterial cells in the Ivan’kovskoe Reservoir were rod-shaped, and, in the Uglichskoe Reservoir, they were mainly vibrio-shaped. In the Ivan’kovskoe Reservoir, from 8.3 to 22.4% of planktonic bacteria were infected by phages, suggesting phage-induced mortality of bacterioplankton equal to 10.5–34.8% (19.1% on average) of the daily bacterial production. In the Uglichskoe Reservoir, from 9.4 to 33.5% of bacteria were phage-infected, suggesting phage-induced bacterial mortality of 13.7–40.2% (23.5% on average) of the daily bacterial production. The obtained results testify to an important role of autochthonous viruses in the regulation of bacterioplankton abundance and production in the reservoirs.  相似文献   

17.
The effect of viruses on the microbial loop, with particular emphasis on bacteria, was investigated over an annual cycle in 2003–2004 in Lake Druzhby and Crooked Lake, two large ultraoligotrophic freshwater lakes in the Vestfold Hills, Eastern Antarctica. Viral abundance ranged from 0.16 to 1.56 × 109 particles L-1;1 and bacterial abundances ranged from 0.10 to 0.24 × 109 cells L-1;1, with the lowest bacterial abundances noted in the winter months. Virus-to-bacteria ratios (VBR) were consistently low in both lakes throughout the season, ranging from 1.2 to 8.4. lysogenic bacteria, determined by induction with mitomycin C, were detected on three sampling occasions out of 10 in both lakes. In Lake Druzhby and Crooked Lake, lysogenic bacteria made up between 18% and 73% of the total bacteria population during the lysogenic events. Bacterial production ranged from 8.2 to 304.9 × 106 cells L-1;1 day-1;1 and lytic viral production ranged from 47.5 to 718.4 × 106 viruslike particles L-1;1 day-1;1. When only considering primary production, heterotrophic nanoflagellate (HNF) grazing and viral lysis as the major contributors to the DOC pool (i.e., autochthonous sources), we estimated a high contribution from viruses during the winter months when >60% of the carbon supplied to the DOC pool originated from viral lysis. In contrast, during the summer <20% originated from viral lysis. Our study shows that viral process in ultraoligotrophic Antarctic lakes may be of quantitative significance with respect to carbon flow especially during the dark winter period.  相似文献   

18.
Bacterioplankton from a meso-eutrophic dam reservoir was size fractionated to reduce (<0.8-microm treatment) or enhance (<5-microm treatment) protistan grazing and then incubated in situ for 96 h in dialysis bags. Time course samples were taken from the bags and the reservoir to estimate bacterial abundance, mean cell volume, production, protistan grazing, viral abundance, and frequency of visibly infected cells. Shifts in bacterial community composition (BCC) were examined by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rDNA genes from the different treatments, and fluorescence in situ hybridization (FISH) with previously employed and newly designed oligonucleotide probes. Changes in bacterioplankton characteristics were clearly linked to changes in mortality rates. In the reservoir, where bacterial production about equaled protist grazing and viral mortality, community characteristics were nearly invariant. In the "grazer-free" (0.8-microm-filtered) treatment, subject only to a relatively low mortality rate (approximately 17% day(-1)) from viral lysis, bacteria increased markedly in concentration. While the mean bacterial cell volume was invariant, DGGE indicated a shift in BCC and FISH revealed an increase in the proportion of one lineage within the beta proteobacteria. In the grazing-enhanced treatment (5-microm filtrate), grazing mortality was approximately 200% and viral lysis resulted in mortality of 30% of daily production. Cell concentrations declined, and grazing-resistant flocs and filaments eventually dominated the biomass, together accounting for >80% of the total bacteria by the end of the experiment. Once again, BCC changed strongly and a significant fraction of the large filaments was detected using a FISH probe targeted to members of the Flectobacillus lineage. Shifts of BCC were also reflected in DGGE patterns and in the increases in the relative importance of both beta proteobacteria and members of the Cytophaga-Flavobacterium cluster, which consistently formed different parts of the bacterial flocs. Viral concentrations and frequencies of infected cells were highly significantly correlated with grazing rates, suggesting that protistan grazing may stimulate viral activity.  相似文献   

19.
A 3 week enclosure experiment was carried out at the Gulf of Finland, the Baltic Sea. After additions of inorganic nutrients [nitrogen (N) + phosphorus (P)] and a carbon source (sucrose), we followed bacterial, viral and heterotrophic nanoflagellate (HNF) abundances, as well as bacterial production and the frequency of bacteria visibly infected with viruses. Furthermore, the decay rate of virus particles was measured three times during the enclosure experiment from the KCN-treated water samples. Bacterial mortality caused by viral lysis was estimated using the decay rates and the fraction of bacteria infected. Nutrient (N + P) additions stimulated phytoplankton growth [the chlorophyll (Chl) a concentration increased from <5 g l-1 up to 19 g l-1], while sucrose additions increased bacterial production (from 4-6 x 107 l-1 h-1). The phytoplankton blooms affected bacterial production only slightly. Bacterial mortality that was explained by viruses ranged from <2% to 13% when estimated from the visibly infected cells, and from 8% to 808% when the decay rates (range 0.052-0.765 h-1) were used. Assuming a clearance rate of 5 nl flagellate-1 h-1, the HNF community could graze 16-135% of total bacterial loss.   相似文献   

20.
The distribution of viral and other microbial abundances as well as the concentrations of dissolved DNA (D-DNA) along a trophic gradient in the northern Adriatic Sea were determined. Virus abundances, covering a range of 1.2 × 109 to 8.7 × 1010 liter-1 were on average 2.5-fold higher in eutrophic than in mesotrophic stations. A 2.5-fold enrichment was also measured for chlorophyll a concentrations, whereas the densities of bacteria and heterotrophic nanoflagellates were only approximately 1.5-fold higher. The frequency of bacteria containing mature phage increased linearly with bacterial abundance. Assuming that mature phage is only visible during the last 14 to 27% of the latent period (L. M. Proctor, A. Okubo, and J. A. Fuhrman, Microb. Ecol. 25:161-182, 1993), we estimated that between 3.5 and 7.3% of the bacterial population was infected at mesotrophic stations versus between 7.0 and 19.5% at eutrophic stations, indicating that the bacterial mortality due to viral lysis might increase with the degree of eutrophication. The frequency of bacteria with mature phage and the burst size varied significantly with the bacterial morphotype; rod-shape cells, the most abundant morphotype, showed low infection rates but a high burst size. Concentrations of D-DNA varied significantly with season but not with trophic conditions. The estimated percentage of viral DNA on total D-DNA concentrations averaged 17.1% (range, 0.7 to 88.3%). Some kind of interaction between heterotrophic nanoflagellates and viruses is proposed. We conclude (i) that the significance of viruses varies with changing trophic conditions and (ii) that viral activity may play a significant role in food web structure under changing trophic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号