首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Isolated crayfish retinas were incubated for 8 h in the light in a medium containing either 3H-fucose or 3H-mannose. Following this incubation, the rhabdom membranes were isolated, the pigment reduced with boranedimethylamine, and extracted with SDS detergent. The membrane-protein extract was separated by SDS-polyacrylamide gel electrophoresis. The photopigment band on the gels was identified by its fluorescence upon exposure to long wavelength ultraviolet light. Determination of the distribution of radioactivity in the gels indicated that both fucose and mannose labeled the photopigment and other glycoproteins. Hydrolysis of the sugars from the labeled photopigment bands, followed by thin layer chromatography, further confirmed that both sugars were incorporated into newly synthesized photopigment without modification. These results provide the first reported data on the partial composition of the carbohydrate moiety of an invertebrate photopigment. These findings on the crayfish photopigment are compared with data from vertebrate rhodopsin and photopigment of other invertebrates.Supported by a grant from the National Science Foundation (BNS 80-04587) and by BRSG Grant 507 RR07031 awarded by the Biomedical Research Support Grant Program, Division of Research Resources, NIH  相似文献   

2.
The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment''s effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl from the pigment''s anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation.  相似文献   

3.
Summary The interrelationship between the diurnal cycle of membrane loss and synthesis of new rhabdom components remains a key element in forming a complete picture of the turnover of photopigment-containing membrane in the crayfish photoreceptor cell. In order to examine this aspect of the turnover process, the diurnal pattern of photopigment synthesis was examined using an in vitro incubation system for incorporation of3H-leucine into photoreceptor protein. The incorporation of3H-leucine into total protein and photopigment specifically was measured in photoreceptors isolated from incubated retinas. The results indicate that for both total protein and photopigment there is no significant variation in the rate of synthesis during the 12-12 light-dark cycle. These data combined with earlier data on diurnal membrane loss from the rhabdom suggest that light-stimulated rhabdom membrane loss is superimposed on a diurnally constant level of synthesis and assembly of new rhabdom constituents.Abbreviations dpm disintegration per minute - LRB lysosome related body - TCA trichloroacetic acid  相似文献   

4.
Summary Spectral sensitivity of the cichlid fishHaplochromis burtoni was measured under both scotopic and photopic conditions using a two-choice, food reward, operant conditioning paradigm. The highest absolute sensitivity (scotopic) is one quantum for every 5 to 50 rods measured at 475 nm (equivalent to a corneal irradiance of 3.8×106 Q s–1 cm–2). A P5001 photopigment apparently mediates spectral sensitivity over most of the visible spectrum; microspectrophotometric studies of rods had previously shown them to contain this photopigment. However, the scotopic behavioral action spectrum shows a sensitivity to short wavelength light higher than is consistent with a P5001 photopigment alone mediating the scotopic visual process. Determinations made under photopic conditions reveal a behavioral action spectrum broader than that found under scotopic conditions and consistent with mediation by interaction of the three known cone types in an opponent processing manner. The calculated photopic threshold value of approximately 104 Q s–1 (receptor)–1 is in agreement with results from other species and corresponds to a corneal irradiance of about 7×1010Q s–1cm–2.  相似文献   

5.
The carotenoid photopigment genes of the purple nonsulfur photosynthetic bacteriumRhodospeudomonas sphaeroides have been cloned into the kanamycin resistance transposon Tn5 to create a carotenoid transposon-Tn5-Crt+. Transposition of Tn5-Crt+ onto the broad host range plasmid pR751 produced a broad host range carotenoid plasmid-pJP115. Transfer of pJP115 to the phylogenetically related nonphotosynthetic bacteriaParacoccus denitrificans, Agrobacterium tumefaciens, Agrobacterium radiobacter, andAzotomonas insolita resulted in carotenoid biosynthesis by these strains. Expression of carotenoid photopigment genes in nonphotosynthetic bacteria lends credence to the evolutionary relationships between photosynthetic and non-photosynthetic bacteria.  相似文献   

6.
Capture of light in the photoreceptor outer segment initiates a cascade of chemical events that inhibit neurotransmitter release, ultimately resulting in vision. The massed response of the photoreceptor population can be measured non-invasively by electrical recordings, but responses from individual cells cannot be measured without dissecting the retina. Here we used optical imaging to observe individual human cones in the living eye as they underwent bleaching of photopigment and associated phototransduction. The retina was simultaneously stimulated and observed with high intensity visible light at 1 kHz, using adaptive optics. There was marked variability between individual cones in both photosensitivity and pigment optical density, challenging the conventional assumption that photoreceptors act as identical subunits (coefficient of variation in rate of photoisomerization = 23%). There was also a pronounced inverse correlation between these two parameters (p<10−7); the temporal evolution of image statistics revealed this to be a dynamic relationship, with cone waveguiding efficiency beginning a dramatic increase within 3 ms of light onset. Beginning as early as 2 ms after light onset and including half of cells by ∼7 ms, cone intensity showed reversals characteristic of interference phenomena, with greater delays in reversal corresponding to cones with more photopigment (p<10−3). The timing of these changes is argued to best correspond with either the cessation of dark current, or to related events such as changes in intracellular cGMP. Cone intensity also showed fluctuations of high frequency (332±25 Hz) and low amplitude (3.0±0.85%). Other groups have shown similar fluctuations that were directly evoked by light; if this corresponds to the same phenomenon, we propose that the amplitude of fluctuation may be increased by the use of a bright flash followed by a brief pause, to allow recovery of cone circulating current.  相似文献   

7.
An analysis of the recovery of tetrahymena from effects of cycloheximide   总被引:7,自引:0,他引:7  
When cycloheximide (0.2 μg per ml) was added to synchronized cultures of Tetrahymena pyriformis GL-C, the initial rate of incorporation of 14C-leucine was reduced to about 20% of the rate observed in control cells. After one hour, the rate increased fairly abruptly to about 60% of the control rate. The cells in cycloheximide underwent synchronous division about three hours after addition of cycloheximide. A second addition of cycloheximide had little effect on either the rate of incorporation or on the time of cell division in the drug. The medium in which cells had recovered brought about full inhibition of 14C-leucine incorporation in fresh cells, indicating that recovery was not accompanied by appreciable degradation of the cycloheximide. It was therefore concluded that during recovery the cells were either adapting to the cycloheximide or excluding it. The recovery process shows some specificity, since cells which had recovered from cycloheximide, and had become insensitive to a second dose of this drug, still retained full sensitivity to another drug, colchicine. Conversely, cells recovering in colchicine became insensitive to fresh colchicine but remained sensitive to cycloheximide.  相似文献   

8.
Responses of rat submandibular acini to intracellular alkalinization were investigated. Intracellular alkalinization was induced by addition of NH4Cl or methylamines, or by prepulse with Na butyrate. Only partial recovery occurred following Na butyrate prepulse or methylated amine addition, but full recovery was observed following addition of NH4Cl. The latter recovery was DIDS and dimethylamiloride-insensitive but was inhibited by bumetanide or high [K+] and stimulated in Na+ free buffer and by ouabain. Acetylcholine stimulated recovery from NH4Cl- or Na butyrate pre-pulse-induced alkalinization and reduced the extent of alkalinization induced by methylated amines. Acetylcholine-stimulated recovery from NH4Cl-induced alkalinization was mimicked by substance P or ionomycin and was partially Ca2+-dependent. This stimulated recovery was bumetanide-insensitive but was partially sensitive to charybdotoxin. Taken together, these data indicate that in unstimulated cells, recovery from alkalinization induced by NH4Cl occurs by bumetanide-sensitive transport of the NH4+ ion, that DIDS-inhibitable anion transport contributes little to this recovery, and that acetylcholine and other Ca2+-elevating agents accelerate recovery from NH4Cl-induced alkaline challenge by a mechanism insensitive to bumetanide, DIDS, ouabain, and dimethylamiloride but sensitive to extracellular Ca2+ and to charybdotoxin. Partial recovery from alkaline challenge can also occur in the absence of NH4+ ions, and acetylcholine also stimulates this mode of recovery. Together, these data suggest that these cells have little intrinsic ability to recover from intracellular alkalinization and that the NH4+ ion may be a surrogate for K+ in at least two ion transport pathways. © 1994 wiley-Liss, Inc.  相似文献   

9.
Simultaneous measurements of photocurrent and outer segment Ca2+ were made from isolated salamander cone photoreceptors. While recording the photocurrent from the inner segment, which was drawn into a suction pipette, a laser spot confocal technique was employed to evoke fluorescence from the outer segment of a cone loaded with the Ca2+ indicator fluo-3. When a dark-adapted cone was exposed to the intense illumination of the laser, the circulating current was completely suppressed and fluo-3 fluorescence rapidly declined. In the more numerous red-sensitive cones this light-induced decay in fluo-3 fluorescence was best fitted as the sum of two decaying exponentials with time constants of 43 ± 2.4 and 640 ± 55 ms (mean ± SEM, n = 25) and unequal amplitudes: the faster component was 1.7-fold larger than the slower. In blue-sensitive cones, the decay in fluorescence was slower, with time constants of 140 ± 30 and 1,400 ± 300 ms, and nearly equal amplitudes. Calibration of fluo-3 fluorescence in situ from red-sensitive cones allowed the calculation of the free-Ca2+ concentration, yielding values of 410 ± 37 nM in the dark-adapted outer segment and 5.5 ± 2.4 nM after saturating illumination (mean ± SEM, n = 8). Photopigment bleaching by the laser resulted in a considerable reduction in light sensitivity and a maintained decrease in outer segment Ca2+ concentration. When the photopigment was regenerated by applying exogenous 11-cis-retinal, both the light sensitivity and fluo-3 fluorescence recovered rapidly to near dark-adapted levels. Regeneration of the photopigment allowed repeated measurements of fluo-3 fluorescence to be made from a single red-sensitive cone during adaptation to steady light over a range of intensities. These measurements demonstrated that the outer segment Ca2+ concentration declines in a graded manner during adaptation to background light, varying linearly with the magnitude of the circulating current.  相似文献   

10.
1. H+ uptake induced by repeated flash excitation approached the full extent of H+ uptake induced by continuous light. At low repetition rates, the H+ uptake was seen to consist of repeated occurrences of rapid H+ uptake.2. The effects of ionophores and uncoupling agents on H+ uptake induced by continuous light could be adequately accounted for in terms of their effects on the flash induced changes. It is concluded that the reaction disclosed by rapid H+ uptake is an integral part of the process observed on continuous illumination, and therefore, in view of the association between rapid H+ uptake and the reduction of a hydrogen-carrying secondary acceptor, that the electron transport system is an integral part of the mechanism of the H+ pump.3. When the frequency of repetition of the flashes was increased, the full extent of H+ uptake or of the carotenoid change was seen only after the first few flashes. Thereafter, the extent decreased, and depended on the dark time between flashes. The full extent of the change could be restored even at high frequencies if uncoupling agents or valinomycin were present.4. It is concluded that the recovery of the extent of H+ uptake or the carotenoid change between flashes reflected the turnover of the electron transport chain, and that the increased recovery in the presence of uncoupling agents or valinomycin reflected the stimulation of electron flow under uncoupled conditions, or on dissipation of the membrane potential.  相似文献   

11.
Background aimsThis study was initiated to determine whether CD34+ cell selection of small-volume bone marrow (BM) samples could be performed effectively on the Isolex® 300i Magnetic Cell Selection System® device and whether the results obtained from these samples were comparable with results from large standard-volume samples. The impact on CD34+ recovery using a full versus half vial of Isolex® CD34 reagent and the effects of shipping a post-selection product were evaluated.MethodsA protocol to evaluate CD34+ cell selection with two ranges of smaller volume BM samples (c. 50hmL and c. 100 mL) was developed and instituted at three Production Assistance for Cellular Therapies (PACT) facilities. The study was performed in two phases.ResultsIn phase I, the mean post-selection CD34+ recoveries from the two sizes of samples were 104.1% and 103.3% (smallest and largest volumes, respectively), and mean CD34+ recoveries were 115.6% and 88.7%, with full and half vials of reagent, respectively. Mean CD34+ recoveries for post-shipment smaller volume samples were 106.8% and for larger volume samples 116.4%; mean CD34+ recoveries were 99.9% and 127.4% for post-shipment samples processed with full and half vials of reagent, respectively. In phase II, mean CD34+ recovery was 76.8% for post-selection samples and 74.0% for post-shipment samples.ConclusionsThe results suggest that smaller volume BM sample processing on the Isolex® system is as efficient or more efficient compared with standard-volume sample processing. Post-processing mean CD34+ recovery results obtained using a full or half vial of CD34 reagent were not significantly different.  相似文献   

12.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+/H+ exchanger and the Na+/Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia. (Mol Cell Biochem 263: 131–136, 2004)  相似文献   

13.
The starvation process of a high-rate partial nitrification system during 30 days and its controlled recovery were studied in an activated sludge pilot plant. Four ammonium-starved reactors under anoxic, aerobic and two different alternating aerobic/anoxic conditions were evaluated. The highest and the lowest decay rates of ammonia oxidizing bacteria (AOB) were obtained under full aerobic (0.24 d−1) and full anoxic (0.11 d−1) conditions, respectively. The evolution of biomass activity correlated well with the AOB quantification using FISH technique. AOB fractions lower than 1% were measured in the four reactors after 23 days of starvation. The recovery of the system was achieved in only 5 days using a nitrogen loading rate (NLR) control loop, obtaining the same conditions than before the long-term starvation period with a NLR of 1.2 g N L−1 d−1 and 98% of nitrite accumulation in the effluent.  相似文献   

14.
This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus (200.2 ± 51.1 g) in water containing CaSO4 after a 4‐h transportation at concentrations of: 0, 75, 150, and 300 mg L?1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after packaging (118.2 ± 14.2 ng ml?1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml?1). Fish kept at 150 mg L?1 CaSO4 reached the pre‐transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L?1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L?1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L?1 CaSO4. Mean corpuscular volume increased in 75 mg L?1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses.  相似文献   

15.
31P-NMR measurements demonstrate that at 37°C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photoreceptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

16.
Summary A technique has been developed for the investigation of the photopigment involved in the photoperiodic control of reproduction in Japanese quail,Coturnix coturnix. When these photoreceptors were exposed to white or monochromatic light a clear relationship was found between light intensity and the extent of photo-induced luteinizing hormone (LH) secretion. A spectroradiometric investigation of the passage of light through the skull and brain enabled us to illuminate the hypothalamic region with equal numbers of photons at a range of wavelengths. Action spectra were then conducted and showed a photopigment with a peak sensitivity at wavelengths near 500 nm. An excellent match was obtained when the standard absorption spectrum for a rhodopsin was fitted to the action spectrum, suggesting a rhodopsin maximally sensitive at 492 nm. The absolute sensitivity of the photoreceptors was calculated at a range of wavelengths: with light at 500 nm, 2.85×10–12 E·cm–2·s–1 triggered the photoperiodic response. This level of sensitivity is matched only by the rhodopsin visual pigments.Abbreviations LH luteinizing hormone - T transmission  相似文献   

17.
An increase of electrical conductance up to a factor 102-5·102 was obtained by adding, in the dark, the honeybee photopigment to a positively charged lipid bilayer. The increase in conductance was made slower by illuminating the system during the incorporation of the protein into the membrane and it was negligible when the photopigment was bleached before the incorporation. The interaction of the photopigment with the membrane is tentatively interpreted in terms of formation of channels.  相似文献   

18.
The physiological ecology of Prasiola stipitata was examined in situ from two supralittoral sites in the Bay of Fundy (Nova Scotian, Canada) during November 2011, when the population was undergoing major expansion. Photosynthetic parameters (effective quantum yield, ΦPSII, maximum quantum yield, Fv/Fm, and relative electron transport rate, rETR) were evaluated using chlorophyll fluorescence of PSII. A largely shaded and continuously moist population showed no change in ΦPSII from one hour after sunrise to sunset in which natural irradiance varied between 3 and 300 μmol photons m?2 s?1. High irradiance (up to 1800 μmol photons m?2 s?1) had no apparent negative impacts on either quantum yield or rETR, but high desiccation in the field reduced quantum yield to almost zero. When thalli were brought into the laboratory, no change in Fv/Fm was observed up to 60% dehydration; however, there was a steep decline in Fv/Fm between 60% and 85% dehydration. Thalli showed complete recovery of Fv/Fm within one hour of reimmersion in seawater after 2 days of desiccation. After 15 days of desiccation full recovery required 24 h and after 30 days of desiccation thalli showed only partial recovery. These observations confirm the adaptation to photosynthesis in high irradiances and the rapid recovery following extreme desiccation observed in other Prasiola species.  相似文献   

19.
Summary The impact of freezing stress on the hydraulic conductivity was studied in 4- to 6-year-old branches of Populus x canadensis Moench robusta under gravity flow conditions. In fresh branch segments, the hydraulic conductivity was approximately 3–6×10-2 1 h-1kPa-1m and the specific conductivity approximately 22 1 h-1kPa-1m-1. Depending on the gas content of the solutions fed to the xylem of the segments, their hydraulic conductivity was lowered by a freezing-thawing cycle by 20–50%. However, full recovery of hydraulic conductivity was found after about 2 days. Degassed solutions in contrast showed no impediment to flow after the same treatment. The results give evidence, firstly, that the harmful effect of freezing on functioning of water conducting elements is due to the formation of bubbles in xylem sap containing gas in solution, and secondly, that recovery from this impediment is possible in microporous vessels within a period of about 2 days.  相似文献   

20.
Abstract: Murine neuroblastoma N1E-115 cells possess membranous receptors for the octapeptide angiotensin II (AngII) whose density is substantially increased by in vitro differentiation. Incubation of differentiated N1E-115 cells with AngII produced a rapid decrease in receptor density, but did not alter the affinity of these receptors for either 125I-AngII or the high-affinity antagonist 125I-[Sarc1,Ile8]-AngII. This apparent down-regulation was dose related with an ED50 of 1 nM, and maximal decreases of ~90% were obtained with 100 nM AngII. Receptor loss from differentiated cell membranes was unaffected by incubations of membranes obtained from agonist-exposed cells with non-hydrolyzable analogues of GTP for 60 min at 37°C to ensure dissociation of the ligand. Partial loss of AngII receptors was apparent within 5 min of agonist exposure, whereas maximal declines were not observed until 30 min. This temporal pattern resulted from a preferential decrease in the AT1 receptor subtype during the first 5 min, followed by a decline in both AT1 and AT2 receptors with longer periods of agonist exposure. The loss of membranous receptors was reversible with partial recovery observed after 4 h, and with nearly full recovery observed 18 h after exposure of the cells to AngII. However, the long-term recovery of receptor density was blocked by the protein synthesis inhibitor, cycloheximide. The heptapeptide angiotensin III produced a similar down-regulation of receptors, and the high-affinity antagonist [Sarc1, Thr8]-AngII blocked agonist-induced down-regulation. Finally, the apparent loss of cell surface Angll receptors decreased the ability of AngII to stimulate cyclic GMP production within intact N1E-115 cells. These results suggest that differentiated N1E-115 cells are an excellent cell line in which to examine the factors regulating the expression of AngII receptor subtypes in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号