首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Since litter input and availability of leaves in many streams is highly seasonal in Portugal, we investigated whether Sericostoma vittatum, a typical shredder, was able to grow using alternative food sources. To test this hypothesis we fed S. vittatum with Alnus glutinosa (alder, CPOM, coarse particulate organic matter), leaf powder from A. glutinosa and Acacia dealbata and FPOM (fine particulate organic matter) from a 5th and a >6th order river, the macrophyte Myriophyllum aquaticum and biofilm. Growth in S. vittatum was significantly influenced by the food item given (ANOVA, P = 0.0082). The food item promoting the highest growth was A. glutinosa, in the form of FPOM (6.48% day−1) and CPOM (4.24% day−1); all other forms of FPOM and biofilm provided relatively low growth rates (0.77–1.77% day−1). The macrophyte M. aquaticum was also used as food source by S. vittatum and promoted intermediate growth (1.96% day−1). Neither nitrogen, phosphorus nor caloric content was correlated with growth. However, since higher growth was achieved with alder, in the form of CPOM and FPOM, we concluded that the chemical content of food was more important for S. vittatum than the physical form of such food. This may partially explain why shredders are able to survive when leaves are scarce in streams. Handling editor: K. Martens  相似文献   

2.
Indirect effects of predators on basal resources in allochthonous-based food webs are poorly understood. We investigated indirect effects of predatory brown trout ( Salmo trutta ) on detritus dynamics in southern beech ( Nothofagus spp.) forest streams in New Zealand through predation on the obligate detritivore, Zelandopsyche ingens (Trichoptera, Oeconesidae). Trout presence/absence and Z. ingens density were manipulated in flow-through tanks to investigate the lethal and sub-lethal effects of trout on litter processing by Z. ingens . An experiment that allowed trout access to Z. ingens showed trout predation reduced densities of Z. ingens resulting in slower breakdown of coarse particulate organic matter (CPOM) and reduced production of fine particulate organic matter (FPOM). A second experiment that prevented trout access to Z. ingens , but allowed the transmission of trout cues, resulted in no change in litter processing rates in the presence of trout. Litter processing rates were higher in high Z. ingens density treatments compared to low density treatments. Thus, trout effects on litter processing were due to reduced Z. ingens densities, not trout-induced modifications to Z. ingens feeding behaviour. Field assays of litter processing rates using artificial leaf packs in natural streams showed significant reductions in CPOM loss in trout streams compared to fishless streams. Z. ingens dominated biomass in fishless stream leaf packs, but a facultative shredder, Olinga feredayi , dominated trout stream leaf packs. Thus, the absence of Z. ingens drove differences in processing rates between trout and fishless streams and the indirect effects of trout on litter processing observed in mesocosms were evident in complex, natural food webs. Overall our study provides evidence that predators can influence resource dynamics in donor-controlled food webs through their effects on consumers.  相似文献   

3.
1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4‰) and a two‐source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom‐up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom‐up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance.  相似文献   

4.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

5.
Large storm events can not only increase the runoff mass exports of particulate organic matter (POM) from watersheds, but can also alter the sources, size distribution, and composition of POM. We investigated the quantity, particle size distribution, carbon (C) and nitrogen (N) content, and sources of POM for five locations longitudinally along a forested Piedmont stream. POM was sampled for multiple storm events of varying magnitude and intensity over a two-year period. POM was separated into coarse (CPOM), medium (MPOM), and fine (FPOM) size classes, and sources were estimated using stable isotopes of 13C and 15N with a Bayesian mixing model. CPOM largely resembled less-degraded vascular plant material characteristic of forest floor litter, which was estimated to contribute to ~40% of CPOM in upstream locations. FPOM was derived from a more variable mixture of sources with stream beds and stream banks playing a greater role at larger drainage locations (up to ~50 and ~30%, respectively). Contributions from both forest floor litter and humus to CPOM increased with increasing event runoff, and litter contributions increased during events with higher rainfall intensities. Higher C and N content was noted in coarse sediments and finer POM fractions appeared to be more degraded based on C:N and isotope ratios. Climate-change projections predict intensification of large storm events in the Northeastern US. Results of this study suggest that large storms will increase the fluvial exports of coarse, labile, C- and N-rich POM with subsequent impacts on receiving aquatic ecosystems.  相似文献   

6.
7.
Jon Molinero  Jesus Pozo 《Hydrobiologia》2004,528(1-3):143-165
Litterfall inputs, benthic storage and the transport of coarse particulate organic matter (CPOM) were studied in two headwater streams, one flowing through a mixed deciduous forest and one through a plantation of Eucalyptus globulus. Vertical and lateral traps, transported CPOM and benthic CPOM were sampled monthly to biweekly and sorted into four categories: leaves, twigs and bark, fruits and flowers and debris. The litterfall inputs were about 20% lower at the eucalyptus site but this reduction was unevenly distributed among the litter categories. The reduction of the nitrogen and phosphorus inputs was larger (50%) than that of CPOM because of the low nutrient concentration of the CPOM at the eucalyptus site. Transported CPOM was also lower at the eucalyptus site. Although total CPOM inputs to the stream were reduced in the eucalyptus plantation, benthic storage of CPOM was 50% higher due to (1) high inputs of CPOM and low discharge during summer, (2) more twig and bark inputs, (3) eucalyptus leaves being retained more efficiently in the stream than deciduous leaves (4) a lower discharge, which may in part be attributable to eucalyptus-induced changes in the hydrological cycle. Increased retention balanced lower nitrogen and phosphorus content of CPOM, so benthic storage of nitrogen and phosphorus was similar at both sites. This work demonstrates that the timing, quality and quantity of inputs and benthic storage of CPOM in streams changes substantially because of the substitution of natural deciduous forest with eucalyptus plantation. Maintenance of buffer strips of natural vegetation may be the best way to protect ecological functioning of small, forested streams.  相似文献   

8.
1. We assessed the impacts of deforestation on the energy base of headwater food webs in seven headwater streams in the Upper Chattahoochee basin, GA, U.S.A where percentage forest in catchments ranged from 82 to 96%. We measured terrestrial organic matter standing crop and determined consumer (crayfish and insectivorous fish) dependence on terrestrial versus aquatic energy sources via gut content and stable isotope analyses. 2. Standing crop of coarse particulate organic matter (CPOM) declined with deforestation at large scales (i.e. catchment deforestation and riparian deforestation at the entire stream network scale). Terrestrial plant matter, the dominant component of crayfish guts, declined in crayfish guts with reductions in CPOM standing crop and with deforestation. 3. Crayfish and insectivorous fish δ13C showed enrichment trends with deforestation, indicating isotopic divergence from CPOM, the most 13C‐depleted basal resource, with reductions in catchment and riparian forest cover. Crayfish δ13C also exhibited enrichment with decreased instream CPOM standing crop. 4. A concentration‐dependent mixing model was used to calculate the relative dependence of crayfish and fish on terrestrial versus aquatic basal resources. Results suggested that both allochthonous CPOM and autochthonous production were important basal resources. Consumer dependence on CPOM decreased with reductions in canopy cover. 5. Our data suggest the importance of forest cover to headwater food webs at multiple scales, and that relatively low levels of riparian deforestation along headwater streams can lead to reductions in stream food web dependence on terrestrial subsidies.  相似文献   

9.
Experiments in laboratory stream channels compared the behaviour of Deleatidium mayfly nymphs in the absence of fish with that in the presence of either native common river galaxias (Galaxias vulgaris Stokell) or introduced brown trout (Salmo trutta L.). Galaxias present similar predation risks to prey during day and night but are more active at night. Whereas, trout present a higher predation risk during the day. Deleatidium maintained a fixed nocturnal drift periodicity that is characteristic of streams containing visually feeding fish regardless of the nature of the predation regime presented in the laboratory. However, the number on the substratum surface, and therefore able to graze algae, was lower when fish were present than when they were absent. The number was lower during the day in the presence of trout, when they present the highest predation risk, and lower during the night compared to the day in trials with galaxias when galaxias activity disturbs Deleatidium from the substratum. Increases in the probability of Deleatidium leaving a patch, reductions in the proportion of mayflies on high quality patches and reductions in the distance travelled from refuge also reflected variations in the predation regime. Similar differences in positioning were observed under the same predation regimes in in situ channels in the Shag River and these were associated with differences in algal biomass. Algal ash-free dry mass (AFDM) and chlorophyll a (chl a) were higher on the tops of cobbles when fish were present. Fish also affected the biomass and the distribution of algae on cobbles as AFDM and chl a were higher on the sides of cobbles from channels with trout compared to those with galaxias. Changes in grazing behaviour, caused by predator avoidance, are likely to have been responsible for differences in algal biomass because no significant differences were detected between treatments in the biomass of Deleatidium or of total invertebrates.  相似文献   

10.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

11.
1. We investigated the spatial (longitudinal position and reach geomorphology) and seasonal (spring and autumn) influences on the variation of δ13C among organic matter sources and consumers in a forested Piedmont river, South Carolina, U.S.A. 2. Six sites were sampled along a continuum and varied in basin area from approximately 30 to 300 km2. Sites fell into two geomorphic categories (i) high‐gradient, rock bed (‘rock’) or (ii) low‐gradient, sand bed (‘sand’) sites. 3. Variation in δ13C was more strongly related to reach geomorphology than longitudinal position. δ13C of biofilm and consumers was consistently enriched at rock sites. Leaf litter (i.e. coarse particulate organic matter, CPOM) δ13C did not vary with bed type. There was significant δ13C enrichment at rock sites for biofilm, seston, fine benthic organic matter (FBOM), and eight of nine consumer trophic guilds (e.g. grazing invertebrates, insectivorous fishes). δ13C of biofilm and four trophic guilds was also positively correlated with drainage area, but the magnitude of enrichment was less than between bed types. 4. δ13C was generally enriched in spring, but this varied among organic matter types, consumers, and by bed type. CPOM and seston were enriched in spring, FBOM was enriched in autumn, and biofilm showed no trend. Five consumer guilds were enriched in spring, and only one fish guild, generalised carnivores, showed enrichment of muscle tissue in autumn. 5. Consumer δ13C enrichment at rock sites suggests greater reliance on algal carbon than for consumers at sand sites, but we also found δ13C enrichment of biofilm at rock sites. Thus, differences in consumer δ13C between bed types could be related to (i) increased consumption of biofilm at rock compared with sand sites, or (ii) consumption of biofilm at rock sites that is enriched relative to biofilm at sand sites or (iii) both mechanisms. 6. δ13C signatures in local food webs appear to respond to processes operating at multiple spatial scales. Overall downstream enrichment of biofilm and consumers was disrupted by strong local effects related to bed morphology. These results suggest that human alteration of channel habitat will have corresponding effects on stream food webs, as assessed by changes in δ13C.  相似文献   

12.
Streams are important sites of nutrient transport and transformation in the landscape but little is known about the way in which individual taxa or individual habitats (riffles and pools) influence nutrient dynamics within stream reaches. We used 5-week additions of a stable isotope (15NH4Cl) tracer to investigate nitrogen dynamics in pools and riffles of two New Zealand streams, one with native fish (Galaxias depressiceps) and the other with invasive brown trout (Salmo trutta). In New Zealand, brown trout initiate a trophic cascade leading to increased algal biomass that we predicted would lead to higher N uptake and retention. Uptake of NO3, but not ammonium, was greater in the trout stream. Rather than causing a large increase in N demand, trout may induce a reallocation of N uptake and retention among food web compartments in different habitats. The largest differences between streams were apparent in riffles, where most uptake and retention of N occurred. In the trout stream, uptake rate by epilithon in riffles was more than six times greater than uptake rates of any other compartment. In the Galaxias stream, several compartments in both habitats had similar uptake rates. Epilithon also accounted for a larger percentage of the 15N retained in the study reach in the trout stream (51%) than the Galaxias stream (34%). Our results show that an individual predatory taxon (in our case an invader) can influence N dynamics in streams but that the magnitude and location of the impact depend on a range of abiotic and biotic factors involved in N dynamics in streams.  相似文献   

13.
The trophic basis of production of the macroinvertebrate communities at three sites on a second-order, low gradient blackwater stream in southeastern U.S.A. was determined. The sampling sites were located above, within and below a low-flow swamp system. From 47–64% of macroinvertebrate production was supported by FPOM at the three sites, with dependence on FPOM being greatest at the swamp site. Algae (filamentous species and diatoms) supported 15–31% of production, indicating that algae can be of considerable importance even in fully canopied headwater streams. The production of some collector-gatherers including Stenonema modestum (55%), Hexagenia munda (58%) and Baetis spp. (78%), was supported predominantly by algae. Algae also supported 61–79% of Hydropsychidae production and 68% of Simuliidae production. Animal material supported 16–26% of macroinvertebrate production at the three sites. CPOM was of minor direct importance to the macroinvertebrate community of this headwater stream, supporting only 1–3% of macroinvertebrate production. Shredders ingested only 1–3 g m−2 y−1 of CPOM, or about 1% of the annual direct leaf fall to this stream. Assuming a 10% assimilation efficiency for CPOM, shredders produced <3 g m−2 y−1 of FPOM through CPOM processing, this being approximately 2 orders of magnitude less than reported for high gradient headwater streams. These results indicate that low-order coastal plain streams vary somewhat from the River Continuum Concept in that they exhibit little utilization of and dependence on CPOM as a direct energy source. Only the smallest first-order streams and especially the extensive floodplains may be the functional headwaters of these stream systems.  相似文献   

14.
Benthic invertebrates, water quality variables, chlorophyll a and particulate organic matter (POM) were studied in 18 sites of mountain streams in Patagonia (Argentina) subjected to six different land uses: native forest, pine plantation, pasture, harvest forest, urban and reference urban. Three streams of each land use were studied in March 2006. Macroinvertebrates were sampled in three riffles and three pools (n = 108) and biomass of detrital fractions of POM were quantified. Overall benthic POM biomass was higher at native and harvest forest than pastures, whereas fine fraction (FPOM) was higher in harvest forest than in pastures. Regarding to autotrophic subsidies bryophytes were the only that changed consistently among uses. These differences in energy resources were correlated with changes in community attributes. Shredder richness was clearly higher at native and harvest forest than exotic pine plantations, collector gatherers density was consistently high at harvest sites, and total density was significantly higher at urban and harvest forest. Multidimensional scaling ordination based on macroinvertebrate density data showed a clear separation of forested (either native or exotic species) from riparian modified areas (pasture, urban and harvest sites). Environmental variables having explanation power on macroinvertebrate assemblages were mostly related with: detritus availability (wood and leaves biomass) and impairment (total phosphorous and % sand). These results confirm that macroinvertebrate assemblage structure in Patagonian low order streams can be altered by land use practices. Among guild structure measures, those indicators based on benthic community functional attributes, shredders richness and collectors density, resulted good candidates to assess land use impacts. On account of riparian corridor management may be critical to the distribution of benthic taxa, the maintenance of good conditions of vegetation adjacent to rivers will enhance water quality and the environment for highly endemic headwater communities of Patagonian streams.  相似文献   

15.
1. Particulate organic material (POM) is an important source of energy and nutrients in aquatic ecosystems. The decomposition of this material is typically studied using the litter bag technique. However, this method has inherent limitations that can preclude the estimation of in situ decomposition rates, especially for fine particles. In this study, we tried to circumvent these limitations through the use of enzymatic decomposition models (EDMs), which relate mass loss rates to lignocellulase activities. With this approach, we investigated the in situ processing of three size ranges of detritus in a Typha wetland. 2. Litter was collected, dried and sorted into three size ranges [coarse (C) > 4, medium (M) 0.5–4 and fine (F) 0.063–0.5 mm] and placed in litter bags that were attached to the sediment surface at two sites in a Typha wetland in May 1994. Over a 7-month period, litter bags were collected and analysed for mass loss and the activities of six extracellular enzymes involved in the degradation of lignocellulose. In situ POM was collected concurrently, sorted into the same three size ranges and assayed for the same suite of enzymes. Additional cores were taken for the determination of organic matter standing stocks and particle size distribution. 3. Mean mass loss rates for CPOM, MPOM and FPOM were -0.139, -0.073 and -0.053% day?1, respectively. Only CPOM rates were significantly different between sites. For CPOM and FPOM there were strong linear relationships between mass loss and cumulative enzyme activities; the mass loss data for MPOM were erratic and precluded the development of reliable enzyme models. EDMs for CPOM and FPOM were constructed from regressions relating mass loss to average cumulative lignocellulase activity, and used to estimate instantaneous in situ decomposition rates. These rates varied by site and throughout the year but averaged -0.204 and -0.045% day?1, respectively. Based upon measurements of OM standing stock and particle size distributions, POM processing rates of 1100–1400 g m2 yr?1 were calculated. These rates are near the upper end of the range for net annual production in Typha wetlands, suggesting that there is little net accumulation of POM. 4. Despite some problems, the EDM method has the potential to facilitate studies of detrital dynamics in large, heterogeneous systems.  相似文献   

16.
1. The hydrologic connectivity between landscape elements and streams means that fragmentation of terrestrial habitats could affect the distribution of stream faunas at multiple spatial scales. We investigated how catchment‐ and site‐scale influences, including proportion and position of forest cover within a catchment, and presence of riparian forest cover affected the distribution of a diadromous fish. 2. The occurrence of koaro (Galaxias brevipinnis) in 50‐m stream reaches with either forested or non‐forested riparian margins at 172 sites in 24 catchments on Banks Peninsula, South Island, New Zealand was analysed. Proportions of catchments forested and the dominant position (upland or lowland) of forest within catchments were determined using geographical information system spatial analysis tools. 3. Multivariate analysis of variance indicated forest position and proportion forested at the catchment accounted for the majority of the variation in the overall proportion of sites in a catchment with koaro. 4. Where forest was predominantly in the lower part of the catchments, the presence of riparian cover was important in explaining the proportion of sites with koaro. However, where forest was predominantly in the upper part of the catchment, the effect of riparian forest was not as strong. In the absence of riparian forest cover, no patterns of koaro distribution with respect to catchment forest cover or forest position were detected. 5. These results indicate that landscape elements, such as the proportion and position of catchment forest, operating at catchment‐scales, influence the distribution of diadromous fish but their influence depends on the presence of riparian vegetation, a site‐scale factor.  相似文献   

17.
Srećko Leiner 《Hydrobiologia》1996,319(3):237-249
The accuracy of two trout biomass (standing stock) prediction models, developed for Wyoming streams by Binns & Eiserman (1979), was evaluated for New Mexico streams inhabited by brown trout, Salmo trutta L. and rainbow trout, Oncorhynchus mykiss Walbaum. Thirty-two representative sites in 15 different streams were sampled under summer low-flow conditions in 1988 and 1989. The 11 phyiscal, chemical, and biological variables used in original models were used as independent variables for simple and multiple regression analysis designed to predict total trout biomass. Model I of Binns and Eiserman proved to be of limited utility; it explained 53% of the variation in total trout biomass at each of the New Mexico sites (kg ha−1 = 8.916 + 0.830/Model U). Only 9.5% of the biomass variations was explained by Model II. Statistical analysis showed that trout biomass was significantly correlated with nitrate-nitrogen concentration and macroinvertebrate diversity in Model I. Because both variates are time consuming to estimate, Model I may not be any more cost-effective than sampling trout directly. The low predictive power of Model II probably indicates that it is limited to the geographical area of field measurement origin.  相似文献   

18.
1. The effects of long‐term nutrient addition at moderate levels were examined in the food web of a forested Mediterranean stream. Basal concentrations of N and P were increased twofold (to c. 750 μg N) and threefold (to c. 30 μg P) from ambient concentrations in an experimental reach. Variations in the abundance of microbes (bacteria and algae), meiofauna and macrofauna, microbial processing of organic matter (extracellular enzyme activities) and stoichiometry of biofilms and invertebrates were compared to an upstream control reach during 4 years of artificial nutrient enhancement. 2. Effects were faster in the bacterial compartment but more substantial in the algal compartment. Epilithic algal biomass doubled in the enriched section jointly triggered by nutrients and increased light irradiance in winter and early spring. Only a few animal groups reacted to the enrichment, including the meiofaunal Copepoda, linked to their high use of enriched FPOM, and macrofaunal grazers (Ancylus), which followed the large algal biomass increase. 3. The enrichment caused biofilm phosphatase activity to decrease, while activities related to the use of algal‐related materials (peptidase, β‐glucosidase) increased. Enzymatic activities related to the use of allochthonous organic matter showed only minor and episodic increases. 4. Changes in stoichiometric ratios were apparent in the epilithic compartment, but not in the sand sediment or in the FPOM. Increases in P content were delayed for 9 months in epilithic biofilms and for nearly 2 years in the case of N. 5. After 2 years of enrichment, the flatworm Schmidtea polychroa (predator), oligochaetes (detritivore) and tadpoles of Bufo bufo (grazer) showed higher per cent N. 6. Enrichment effects were produced in spite of flow cessations that occurred commonly in summer. The results show that forested streams subjected to sustained (though minor) nutrient enrichment changed aspects of their biological structure and metabolism and that changes were especially favoured by periods when light was not limiting.  相似文献   

19.
20.
In tropical landscapes, forest remnants have been reduced to narrow strips of vegetation along rivers and streams surrounded by agricultural land that affects biodiversity, depending on the habitat and landscape characteristics. To assess the effect of riparian forest loss on the diversity of Staphylininae predatory rove beetles, we considered two habitat conditions (river sites with riparian vegetation and sites with heterogeneous pastures) within two micro-basin types (with >70% and <40% forest cover) in a tropical montane cloud forest landscape, Mexico. Beetles were collected using baited pitfall traps during the rainy season of 2014. No differences were found between micro-basin types and, although species richness (0D) was similar between habitat conditions, when the diversity of common (1D) and dominant (2D) species was considered, sites with heterogeneous pastures were almost twice as diverse as those with riparian vegetation. All diversity measurements were greater in sites with heterogeneous pastures of either micro-basin type. Air temperature and canopy cover were the environmental variables that best explained the variation in beetle species composition. The greatest environmental differences related to species composition were detected between habitat conditions and were more evident in sites with heterogeneous pastures and low forest cover in the surroundings. The results suggest that replacing riparian vegetation with heterogeneous pastures, within micro-basins that lost between 30% and 60% of their forest cover, does not significantly reduce the diversity of predatory rove beetle but rather modifies the beetle composition. Effective formulation of management strategies to mitigate the impact of land use modification therefore requires an understanding of the interaction between vegetation remnants and landscape characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号