首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1. The collagen hydroxyproline in rat liver was composed of 3.5% neutral-soluble collagen, 4.9% acid-soluble collagen and 91.6% insoluble collagen. In labelling studies with [(14)C]proline in vitro, the specific radioactivities of neutral-soluble, acid-soluble and insoluble collagens in rat liver were found to be 233000, 69000 and 830d.p.m./mumol of hydroxyproline respectively after 1h. 2. During subacute carbon tetrachloride poisoning the hepatic content of insoluble collagen markedly increased, whereas those of soluble collagens did not change. During recovery from subacute poisoning hepatic contents of soluble collagens were markedly decreased. 3. After 8 weeks of carbon tetrachloride poisoning the specific radioactivities of hepatic soluble collagens increased, while that of insoluble collagen decreased. During recovery from subacute poisoning, the specific radioactivities of soluble collagens decreased to the normal range and that of insoluble collagen further decreased. 4. Hepatic collagenolytic activity solubilizing insoluble collagen, which differs from mammalian collagenase, decreased under the conditions of the subacute poisoning and also during recovery from subacute poisoning.  相似文献   

2.
Eight lysosomal enzymes were measured in different types of rat liver cells. Hepatocytes were purified by low speed centrifugation of a cell suspension obtained by treating the perfused liver with collagenase. Nonparenchymal cells (NPC) were purified by centrifugation after treating the initial cell suspension with pronase, which selectively destroys the parenchymal cells (PC). Kupffer cells were found to attach selectively to tissue culture dishes after overnight culture of an NPC suspension. The specific activity of lysosomal enzymes was generally higher in NPC than in hepatocytes, but the different enzymes were concentrated to different degrees in the NPC. Specific activity of acid phosphatase was 1.7 times higher in NPC than in hepatocytes. Specific activity of acid DNAase, on the other hand, was 8 times higher in NPC than in hepatocytes. Other enzymes showed intermediate values. Assuming that 30% of the liver cells are nonparenchymal it may be calculated that from 7% (acid phosphatase) to 25% (acid DNAase) of the hepatic lysosomal enzymes are present in the NPC. The pattern of lysosomal enzymes in cultured Kupffer cells was similar to that of the NPC from which the Kupffer cells were derived. Cathepsin D and β-glucuronidase were, however, elevated in Kupffer cells as compared with NPC. The enzyme pattern in Kupffer cells was almost identical with that of rat peritoneal macrophages.  相似文献   

3.
Xiaoming Tang  Juntao Yang  Jun Li 《Life sciences》2009,84(15-16):552-557
AimsHepatic fibrosis is reversible, associated with apoptosis of activated hepatic stellate cells (HSCs) as injury subsides, thus providing potential targets for therapy. Little is known, however, about the course of this condition. The objective of this study was to elucidate the mechanism by which Kupffer cells regulate HSC biology during regression of hepatic fibrosis and the effect of leflunomide on this process.Main methodsWe harvested Kupffer cells from rats during spontaneous recovery from liver fibrosis induced by carbon tetrachloride (CCl4) and prepared recovery Kupffer cell conditioned medium (KCCM). Culture-activated HSCs were pretreated in the absence or presence of A771726, the active metabolite of leflunomide, and then stimulated with recovery KCCM.Key findingsFollowing stimulation with recovery KCCM, HSCs showed a decrease in proliferation and an increase in apoptosis by a caspase-dependent mechanism. Furthermore, pretreatment with A771726 markedly enhanced these effects. Real-time quantitative PCR (Q-PCR) analysis showed increased expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in Kupffer cells during the spontaneous recovery phase. The pro-apoptotic function of KCCM prepared from TRAIL siRNA-treated Kupffer cells was obviously decreased, suggesting that TRAIL played an important role in recovery from hepatic fibrosis. Moreover, A771726 enhanced recovery KCCM-induced apoptosis of HSCs by a mechanism involving the inhibition of nuclear factor-kappa B (NF-κB) activation.SignificanceOur results showed the role of TRAIL in the apoptosis of activated HSCs that is induced by Kupffer cells prepared from livers recovering from CCI4-induced fibrosis and provided insights into the resolution of fibrosis and the mechanisms by which leflunomide might act upon liver fibrosis.  相似文献   

4.
Plasma lysosomal enzyme levels and hepatic phagocytosis were determined following Noble-Collip drum trauma in the rat. Circulating cathepsin and acid phosphatase activity increased after sublethal trauma (300 rev), reaching maximal levels at 1-3 hr and returning to pretrauma levels at 24 hr after trauma. Hepatic phagocytosis was decreased maximally at 1 hr and recovered to control levels at 24 hr after sublethal trauma. Increasing trauma intensity (100-500 rev) resulted in a progressive failure in hepatic Kupffer cell phagocytosis and a progressive increase in plasma lysosomal enzyme levels when tested at 60-min post-trauma. A significant inverse correlation was found between the plasma lysosomal enzyme levels and Kupffer cell phagocytosis after trauma. The functional significance of the relationship between these two parameters and its importance in shock survival remain to be determined.  相似文献   

5.
Activated Kupffer cells and macrophages accumulate in necrotic areas in the liver. Osteopontin, an extracellular matrix with RGD sequence, has been shown to act as a chemokine that can induce monocyte migration. The possibility that osteopontin can play a role in infiltration of both cells into hepatic necrotic areas was investigated in rats. Northern blot analysis revealed that osteopontin mRNA expression was minimal in Kupffer cells and hepatocytes immediately after isolation from normal rats, but slight in hepatic stellate cells assumed nearly quiescent in function after 3 days of culture on plastic dishes. When rat received carbon tetrachloride, liver necrosis developed between 1 and 3 days following the intoxication. In these rats, osteopontin mRNA expression assessed by quantitative competitive RT-PCR was increased in the liver later than 1 day with its peak at 2 days following the intoxication. Kupffer cells and hepatic macrophages and hepatic stellate cells isolated from such liver showed marked expression of osteopontin mRNA on Northern blotting. Immunohistochemical examination disclosed that osteopontin was stained in macrophages including Kupffer cells and stellate cells in the necrotic areas. On electron microscopy, osteopontin stains were present in the Golgi apparatus in these cells. Recombinant human osteopontin promoted migration of Kupffer cells isolated from normal rats and cultured in a Transwell cell culture chamber in a dose-related manner. We conclude that activated Kupffer cells and hepatic macrophages and stellate cells express osteopontin. These cells might contribute to the infiltration of Kupffer cells and macrophages into hepatic necrotic areas by expressing osteopontin.  相似文献   

6.
目的初步探讨TOLL样受体下游重要信号因子TRIF与肝纤维化发生发展的病理机制关系。方法以四氯化碳皮下注射+低蛋白高脂饮食+酒精饮料的方法复制大鼠肝纤维化模型。将SD大鼠随机分成正常对照组和模型组,在完成制备模型实验后进行取材。部分实验鼠进行心脏生理盐水和多聚甲醛灌注后,取肝脏组织制备石蜡切片,进行常规HE染色和免疫组化实验;另一部分实验鼠脱颈安乐死后,取新鲜肝组织进行电镜标本的制备和Western Blot实验检测。结果 HE染色结果显示与而正常对照组大鼠相比,模型组大鼠肝小叶结构明显破坏,肝细胞数量明显减少和肝纤维化程度等特点明显;电镜结果也显示,肝纤维化组可见大量胶原纤维沉积现象,胞质可见明显的溶解现象,在狄氏腔内,肝星状细胞的细胞核溶解,血窦内皮细胞胞质、胞核皆溶解;免疫组化模型组大鼠肝组织均显示内皮细胞、星形细胞等TRIF都有强烈高表达,并且以胞核表达为主,亦见胞质表达,而正常组呈现弱阳性表达;与正常对照组相比,模型组大鼠肝组织TRIF蛋白表达都明显升高,呈显著性差异(P<0.01),与形态学的表达特点相一致。结论 TRIF在肝纤维化中表达显著增强,说明在肝纤维化过程中,TOLL样受体明显激活,并且通过下游信号转导途径,在机体内产生一系列的免疫应答反应。通过该现象的观察,我们初步证实了TOLL样受体固有免疫信号因子TRIF在纤维化形成中起着重要的作用。  相似文献   

7.
The activities of four enzymes catalysing post-translational modifications of the collagen polypeptide chains were assayed in the livers of rats with experimental hepatic injury. The liver injury was induced by injecting carbon tetrachloride twice weekly, and assays of the enzymic activities were carried out 2 and 4 weeks after commencement of administration of carbon tetrachloride. The liver homogenates were preincubated with Triton X-100 before the assays, because such treatment was found to increase the activities of all four enzymes in the supernatants of liver homogenates. The activities of all four enzymes had increased by 2 weeks after commencement of carbon tetrachloride administration. No increase was found in the collagen content of the livers at this stage and thus an increase in all four enzyme activities preceded an increase in the collagen content of the liver. A further slight increase was found in three of the enzyme activities during the subsequent 2 weeks of the experiment, whereas no further increase was found in the collagen galactosyltransferase activity. A statistically significant correlation was found between all four enzyme activities, but the magnitude of the increases varied considerably. The largest increase was found in lysyl hydroxylase activity, and at 4 weeks the magnitude of this was about three times that of the collagen galactosyltransferase activity. The results thus indicate that the increased enzyme activities cannot be explained simply by an increase in the number of collagen-producing cells having similar enzyme activity patterns to those of the cells initially present in the liver.  相似文献   

8.
To determine if alterations in collagen degradation may contribute to the pathogenesis of fibrosis and cirrhosis, we studied the hepatic collagenase activity of 20 baboons given alcohol containing diets or control diets under carefully controlled experimental conditions. We also studied 28 patients whose livers were biopsied for diagnostic purposes. Hepatic collagenase activity was significantly increased in baboons with fatty liver compared to levels in normal, control fed animals [(1.98 +/- 0.19 vs 1.20 +/- 0.08 units (microgram collagen digested/hour/mg liver protein) +/- S.E.M., p less than 0.001)]. The increase in hepatic collagenase activity persisted at the stage of fibrosis when compared to the activity in control baboons (2.16 +/- 0.07 vs 1.20 +/- 0.08 units +/- S.E.M., p less than 0.001). A single cirrhotic baboon available for study had an hepatic collagenase activity of 1.58 units. Patients with hepatic fibrosis had significantly higher hepatic collagenase activity than those with fatty livers [(9.12 +/- 0.94 (n =14) vs 4.52 +/- 0.54 (n = 7) units +/- S.E.M., p less than 0.001)]. However, in the group with cirrhosis, hepatic collagenase was lower [(3.92 +/- 0.61 (n = 7) units +/- S.E.M., p less than 0.001)] than in the group with fibrosis. Our findings suggest that the development of cirrhosis is coincident with, or favored by a failure of hepatic collagen degradative enzymes to keep pace with hepatic collagen synthesis.  相似文献   

9.
10.
Changes in the total activity of acid phosphatase in the liver as well as changes in the enzyme activity in hepatocytes and connective tissue cells of fibrosis layers were investigated, using quantitative histochemical method, in the process of mouse cirrhosis involution. After discontinuation of CCl4 injection, the animals with cirrhosis were divided into two groups. In the first group the resection of the left lobe of the liver was performed. The animals of the second group were not subject to operation. The results demonstrate that there is a close correlation between lysosomal hydrolase activity of hepatocytes and connective tissue cells of the liver and collagen resorption during cirrhosis involution. The most intensive lysis of collagen takes place within the first three weeks of cirrhosis involution in both experimental groups. Partial resection in cirrhosis has no significant effect on the changes and level of total activity of lysosomal hydrolase enzymes in the liver during cirrhosis involution.  相似文献   

11.
1. Collagenolytic activity towards acid-soluble collagen labelled with [(14)C]-proline was assayed in rat liver with and without carbon tetrachloride poisoning. The products of enzymic digestion were found to be free amino acids and peptides. 2. The hepatic collagenolytic activity increased under conditions of single-dose and subacute carbon tetrachloride poisoning, and correlated with hydroxyproline content. The highest activity was found during recovery from subacute poisoning. 3. Under the same experimental conditions, hepatic acid-proteinase activity changed independently of the collagenolytic activity and also of hepatic hydroxyproline content. 4. The increased collagenolytic activity during carbon tetrachloride poisoning was found mainly in the supernatant fraction. 5. The ratio of the collagenolytic activity to hepatic hydroxyproline content increased during recovery from single-dose and subacute poisoning, and decreased during subacute poisoning.  相似文献   

12.
The level of serum beta-glucuronidase increases in various pathological conditions, including liver disorders. The aim of this investigation was to study the changes in liver lysosomal membrane stability during experimentally induced hepatic fibrosis that may result in the elevation of serum beta-glucuronidase. Liver injury was induced by intraperitoneal injections of N-nitrosodimethylamine (NDMA) in adult male albino rats over 3 weeks. The progression of fibrosis was evaluated histopathologically as well as by monitoring liver collagen content. Lipid peroxides and beta-glucuronidase levels were measured in the liver homogenate and subcellular fractions on days 0, 7, 14, and 21 after the start of NDMA administration. Serum beta-glucuronidase levels were also determined. A significant increase was observed in beta-glucuronidase levels in the serum, liver homogenate, and subcellular fractions, but not in the nuclear fraction on days 7, 14, and 21 after the start of NDMA administration. Lipid peroxides also increased in the liver homogenate and the lysosomal fraction. The measurement of lysosomal membrane stability revealed a maximum lysosomal fragility on day 21 during NDMA-induced fibrosis. In vitro studies showed that NDMA has no significant effect on liver lysosomal membrane permeability. The results of this investigation demonstrated that lysosomal fragility increases during NDMA-induced hepatic fibrosis, which could be attributed to increased lipid peroxidation of lysosomal membrane. In this study, we also elucidated the mechanism of increased beta-glucuronidase and other lysosomal glycohydrolases in the serum during hepatic fibrosis.  相似文献   

13.
Experiments on mice have demonstrated ultrastructural changes in collagen and hepatocytes during reverse development of liver cirrhosis. Progressive lysis of collagenous fibers has been noted. Changes in hepatocytes point to a rise in the synthetic and endocytosis activity in these cells. It is suggested that exocellular lysis of collagen in the process under consideration is initiated by collagenase whereas subsequently it takes place under the action of lysosomal enzymes secreted by hepatocytes to the exocellular space.  相似文献   

14.
BACKGROUND/AIMS: Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. METHODS: Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. RESULTS: TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. CONCLUSIONS: The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.  相似文献   

15.
Fibrillar collagen in the myocardium provides a supportive framework for myocytes and capillaries. Disruption of this organized framework has been observed in certain pathological states. Collagen degradation is primarily mediated by the specific enzyme collagenase, which has been found to exist in various tissues including the myocardium. In this report we describe a method that detects collagenase activity in sections of cardiac tissue. This method is on the basis of degradation of collagen by collagenase on one hand and the visualization of disrupted collagen fibers by immunofluorescence on the other. Frozen rat heart sections were incubated under optimal conditions for collagenase activity (37 degrees C in the presence of 0.1 M calcium at pH 7.4) for 24 h and 48 h. Subsequently, immunofluorescence staining with antibody to type I collagen was performed and the collagenous structures were visualized by immunofluorescence light microscopy. As control, untreated rat heart sections and sections incubated in the absence of calcium were similarly treated with antibody. After the 24 h of incubation, we found no change in the structural integrity of collagen fibers. Marked disruption of the type I collagen fibers was observed 48 h after incubation. No evidence of collagen fiber disruption was found in control sections. Experiments with exogenous collagenase resulted in similar collagen fiber disruption in the frozen rat heart sections. We conclude that the disruption of collagen type I fibers after 48 h of incubation, under optimal conditions for collagenolytic digestion, is the result of collagen degradation by intrinsic collagenase of the myocardium.  相似文献   

16.
Changes in lysosomal enzymes in acute experimental liver injury   总被引:10,自引:3,他引:7       下载免费PDF全文
1. An investigation has been made of the changes occurring in lysosomal enzyme activities during the early development of experimentally produced liver injury in the rat. Three enzymes have been studied: acid phosphatase, acid ribonuclease and β-glucuronidase. Four different methods of inducing liver injury have been used: administration of carbon tetrachloride, thioacetamide, dimethylnitrosamine and the fungal toxin sporidesmin. 2. The majority of the data presented concern alterations produced by carbon tetrachloride. Despite the extensive central necrosis and accompanying fat accumulation which this poison produced in the liver, only small changes in the activity and latency of lysosomal enzymes could be detected. In the early (pre-necrotic) period of injury these changes were insignificant. At a late stage of injury, when extensive centrilobular necrosis was present, there were indications of lysosomal rupture. 3. The results obtained with the other three hepatotoxins were similar to those described for carbon tetrachloride in that no evidence of early lysosomal rupture was obtained during the pre-necrotic period. It is concluded that lysosomes probably play no role in the early development of the four types of liver injury studied but, instead, are involved in later scavenging processes.  相似文献   

17.
Hepatic fibrosis results from an imbalance between fibrogenesis and fibrolysis in the liver. It remains uninvestigated whether Kupffer cells produce matrix metalloproteinase-13 (MMP-13), which mainly hydrolyzes extracellular matrix (ECM). We sought to determine the role of Kupffer cells in fibrogenesis/fibrolysis. In vivo, we used the rat model of pig serum-induced liver fibrosis. A subset was treated with gadolinium chloride (GdCl(3)), which specifically acts on Kupffer cells. Administration of GdCl(3) remarkably decreased the hydroxyproline content of the liver and increased the expression of MMP-13 mRNA in the liver without a difference in procollagen type I and tissue inhibitors of metalloproteinase-1 (TIMP-1) mRNA expression on Northern blot analysis with the elimination of ED2-positive cells. In vitro, addition of GdCl(3) to isolated Kupffer cells showed increased type I collagen-degrading activity in a dose-dependent manner as well as MMP-13 mRNA expression on Northern blot analysis. It is concluded that Kupffer cells are a major source of MMP-13 and modulation of Kupffer cells by GdCl(3) prevents liver fibrosis with increased expression of MMP-13 mRNA and protein, whereas procollagen type I and TIMP-1 mRNA, which encode two major effectors of fibrogenesis, were unchanged. This is the first report showing that Kupffer cells produce interstitial collagenase (MMP-13) resulting in the reduction of ECM. This discovery may provide new insights into therapy for hepatic fibrosis.  相似文献   

18.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

19.
Summary Fibrillar collagen in the myocardium provides a supportive framework for myocytes and capillaries. Disruption of this organized framework has been observed in certain pathological states. Collagen degradation is primarily mediated by the specific enzyme collagenase, which has been found to exist in various tissues including the myocardium. In this report we describe a method that detects collagenase activity in sections of cardiac tissue. This method is on the basis of degradation of collagen by collagenase on one hand and the visualization of disrupted collagen fibers by immunofluorescence on the other. Frozen rat heart secctions were incubated under optimal conditions for collagenase activity (37°C in the presence of 0.1 M calcium at pH 7.4) for 24 h and 48 h. Subsequently, immunofluorescence staining with antibody to type I collagen was performed and the collagenous structures were visualized by immunofluorescence light microscopy. As control, untreated rat heart sections and sections incubated in the absence of calcium were similarly treated with antibody. After the 24 h of incubation, we found no change in the structural integrity of collagen fibers. Marked disruption of the type I collagen fibers was observed 48 h after incubation. No evidence of collagen fiber disruption was found in control sections. Experiments with exogenous collagenase resulted in similar collagen fiber disruption in the frozen rat heart sections. We conclude that the disruption of collagen type I fibers after 48 h of incubation, under optimal conditions for collagenolytic digestion, is. the result of collagen degradation by intrinsic collagenase of the myocardium.  相似文献   

20.
We have previously reported that monocyte aryl hydrocarbon hydroxylase (AHH) activity is depressed in patients with liver disease and is decreased more in cirrhosis than in early stage liver disease. To determine if monocyte AHH activity reflects liver AHH activity, we studied an animal model of cirrhosis, i.e., yellow phosphorus induced cirrhosis in the pig. AHH activity was detectable in monocytes isolated from peripheral blood of normal pigs (0.32 +/- 0.13 nmol.mg-1 P.h-1, n = 11) and was comparable to the level of AHH activity in hepatic Kupffer cells isolated from wedge or needle biopsies of livers of normal pigs (0.38 +/- 0.21, n = 7). The AHH level in pig Kupffer cells was approximately 10% of the AHH level in hepatocytes and microsomes. To induce liver disease, pigs were administered yellow phosphorus (0.6 mg/kg) 5 days per week for 16 weeks. At 4 weeks of treatment, monocyte AHH activity was not different from control and liver histology was normal. Depression of monocyte AHH activity was evident at 8 weeks of treatment when liver fibrosis was seen histologically. At 12 weeks of treatment when histology revealed extensive liver fibrosis and collagen levels were elevated, the level of monocyte AHH activity was decreased 67% compared with controls. Similar changes were observed at 12 weeks in Kupffer cell AHH activity (86% decrease) and hepatocyte AHH activity (70% decrease) compared with controls. These results suggest that monocyte AHH activity reflects liver AHH activity and may be a good indicator of change in liver enzyme function in liver disease in the pig model of cirrhosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号