首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The filamentous sulfur bacteria Thioploca spp. produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm down into the sediment. The structure of the Thioploca communities off the Bay of Concepcion was investigated with respect to biomass, species distribution, and three-dimensional orientation of the sheaths. Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone. The maximum wet weight of sheaths, 800 g m(sup-2), was found at a depth of 90 m. The bacterial filaments within the sheaths contributed about 10% of this weight. The highest density of filaments was found within the uppermost 1 cm of the mat. On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp. from mixed populations containing Beggiatoa spp. Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment.  相似文献   

2.
In order to investigate the environmental requirements of the filamentous sulfur bacteria Thioploca spp., we tested the chemotactic responses of these sedimentary microorganisms to changes in oxygen, nitrate, and sulfide concentrations. A sediment core with a Thioploca mat, retrieved from the oxygen-minimum zone on the Chilean shelf, was incubated in a recirculating flume. The addition of 25 (mu)mol of nitrate per liter to the seawater flow induced the ascent of the Thioploca trichomes (length, up to 70 mm) in their mostly vertically oriented gelatinous sheaths. The upper ends of the filaments penetrated the sediment surface and protruded 1 to 3 mm into the flowing water before they bent downstream. By penetrating the diffusive boundary layer, Thioploca spp. facilitate efficient nitrate uptake in exposed trichome sections that are up to 30 mm long. The cumulative length of exposed filaments per square centimeter of sediment surface was up to 92 cm, with a total exposed trichome surface area of 1 cm(sup2). The positive reaction to nitrate overruled a negative response to oxygen, indicating that nitrate is the principal electron acceptor used by Thioploca spp. in the anoxic environment; 10-fold increases in nitrate fluxes after massive emergence of filaments strengthened this hypothesis. A positive chemotactic response to sulfide concentrations of less than 100 (mu)mol liter(sup-1) counteracted the attraction to nitrate and, along with phobic reactions to oxygen and higher sulfide concentrations, controlled the vertical movement of the trichomes. We suggest that the success of Thioploca spp. on the Chilean shelf is based on the ability of these organisms to shuttle between the nitrate-rich boundary layer and the sulfidic sediment strata.  相似文献   

3.
Based upon 16S rRNA sequence and phenotypic similarities, a large, uncultured Beggiatoa sp. from the Bay of Concepción (Chile), is very closely related to the Chilean Thioploca species Thioploca araucae., whose filaments grow as sheathed bundles. The formation of sheathed filament bundles, the key character to distinguish the genus Thioploca from Beggiatoa, places closely related filamentous sulfur-oxidizing bacteria into two different genera, incongruent with 16S rRNA-defined clades.  相似文献   

4.
Methane metabolism was investigated with respect to depth in intertidal microbial mats of the Great Sippewissett Salt Marsh, Massachusetts. Although sulfate-reducing organisms dominate anaerobic carbon consumption in marine microbial mats, methanogens persist and their activity varies vertically and temporally in the mat system. In the Sippewissett mats, potential methane production for all mat layers was higher in the spring (17.2 ± 4.5 nmol CH4 cm−2 day−1) than in the fall (3.0 ± 1.1 nmol CH4 cm−2 day−1) and maximal rates were consistently observed in proximity to the chemocline (5–10 mm depth). The methane flux from the mat surface did not vary appreciably over time due to the ability of methanotrophic activity to limit net methane production. Evidence indicates that both aerobic and anaerobic oxidation of methane occurs in this system. The importance of H2 as a substrate for methanogenesis appeared to be the greatest at the mat surface (0–10 mm), and the proportion of methylotrophic methanogens generally increased with depth. These results suggest that both non-equilibrium H2 dynamics and the use of non-competitive substrates permit coexistence of methanogens and sulfate-reducing organisms in the mat system.  相似文献   

5.
A Miocene methane-seep limestone from the Romagna Apennine (Pietralunga, Italy) was found to contain an extraordinarily well-preserved microbial mat consisting of filamentous fossils. Individual filaments of the lithified Pietralunga mat are 50 to 80 μ m in diameter and resemble the sulfide-oxidizing bacterium Beggiatoa. Mats of sulfur bacteria are common around modern methane-seeps, but have not yet been reported from ancient seep limestones. This is thought to be related to the conditions prevailing in metabolically active mats of sulfur bacteria that do not favor carbonate formation. The preservation of the Pietralunga mat was most likely caused by a sudden change from oxidizing to anoxic conditions, leading to the rapid carbonate precipitation induced by anaerobic oxidation of methane. Lipid biomarkers specific for archaea and sulfate-reducing bacteria linked with the anaerobic oxidation of methane co-occur with compounds derived from methanotrophic bacteria and ciliates. These findings confirm a close proximity of oxic and anoxic conditions, as required for the growth of sulfide-oxidizing bacteria in the methane-based ecosystem. The lack of earlier reports on fossilized thiotrophic mats in seep limestones is most likely related to the rarity of environmental changes rapid enough to preserve the filaments rather than to a lower frequency of thiotrophic mats around methane-seeps in the geological past.  相似文献   

6.
Abstract The sulfur cycle in a microbial mat was studied by determining viable counts of sulfate-reducing bacteria, chemolithoautotrophic sulfur bacteria and anoxygenic phototrophic bacteria. All three functional groups of sulfur bacteria revealed a maximum population density in the uppermost 5 mm of the mat: 1.1 × 108 cells of sulfate reducers cm−3 sediment, 2.0 × 109 cells of chemolithoautotrophs cm−3 sediment, and 4.0 × 107 cells of anoxygenic phototrophs cm−3 sediment. Bacterial dynamics were studied by sulfate reduction rate measurements, both under anoxic conditions (dark incubation) and oxic conditions (incubation in the light), and determination of the vertical distribution of the potential rate of thiosulfate consumption under oxic conditions. Sulfate reduction rates in the top 5 mm of the sediment were 566 nmol cm−3 d−1 in the absence of oxygen, and 123 nmol cm−3 d−1 in the presence of oxygen. In the latter case, the maximum rate was found in the 5–10-mm depth horizon (361 nmol cm−3 d−1). Biological consumption of amended thiosulfate was rapid and decreased with depth, while in the presence of molybdate, thiosulfate consumption decreased to 10–30% of the original rate.  相似文献   

7.
The vertical distribution and diversity of sulfate-reducing prokaryotes (SRPs) in a sediment core from the Pearl River Estuary was reported for the first time. The profiles of methane and sulfate concentrations along the sediment core indicated processes of methane production/oxidation and sulfate reduction. Phospholipid fatty acids analysis suggested that sulfur-oxidizing bacteria (SOB) might be abundant in the upper layers, while SRPs might be distributed throughout the sediment core. Quantitative competitive-PCR analysis indicated that the ratios of SRPs to total bacteria in the sediment core varied from around 2–20%. Four dissimilatory sulfite reductase ( dsrAB) gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), bottom layer (44–50 cm) and the sulfate-methane transition zone (32–42 cm) sediments. Most of the retrieved dsrAB sequences (80.9%) had low sequence similarity with known SRP sequences and formed deeply branching dsrAB lineages. Meanwhile, bacterial 16S rRNA gene analysis revealed that members of the Proteobacteria were predominant in these sediments. Putative SRPs within Desulfobacteriaceae, Syntrophaceae and Desulfobulbaceae of Deltaproteobacteria , and putative SOB within Epsilonproteobacteria were detected by the 16S rRNA gene analysis. Results of this study suggested a variety of novel SRPs in the Pearl River Estuary sediments.  相似文献   

8.
A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.  相似文献   

9.
A colorless sulfur bacterium of the genus Thioploca, which forms bacterial mats, was studied in the region of underwater thermal vents (Frolikha Bay, northern Baikal). The organism occurs under microaerobic conditions in top sediment layers, and its biomass can amount to 65 mg of wet weight per 1 kg of silt. Individual filaments of the bacterium penetrate the anaerobic zone to the depth of 19 cm. Thioploca is distributed in a mosaic pattern over the bottom of the bay. Thioploca mats are typically found near vents that discharge low-temperature underground water. In the form of separate filaments, this bacterium is more widely distributed in the top sediment layer, particularly in sediments with a more active sulfate reduction. The bacteria from the deep-water and coastal areas of the bay have different morphology. Cells of Thioploca are able to accumulate nitrate, and the coefficient of nitrate accumulation in wet bacterial mass in relation to the near-bottom water is 1.3 x 10(4), suggesting a similarity of metabolism with seawater species. A more lightweight isotopic composition of nitrogen in cell mass as compared to that of representatives of zoobenthos also indicates an active metabolism of nitrogen, apparently, in the process of nitrogen respiration. Comparison of the composition of stable isotopes of carbon in the biomass of representatives of different trophic levels, including Thioploca, found at a depth of 105 m indicates its planktonic origin, whereas, in the deeper bay region, the biomass of Thioploca incorporates more of the light carbon originating from biogenic methane.  相似文献   

10.
Microsensors, including a recently developed NO3(-) biosensor, were applied to measure O(2) and NO3(-) profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O(2), high NO3(-), and bottom water current. On addition of NO3(-) and NO2(-), Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3(-) was only 0.5 mm and a sharp maximum of NO3(-) uptake was observed 0.5 mm above the sediment surface. In sediments with only few Thioploca spp., NO3(-) was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3(-) to NH(4)(+). Measurements of the intracellular NO3(-) and S(0) pools in Thioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3(-) were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment.  相似文献   

11.
A white, filamentous microbial mat at the Milano mud volcano in the Eastern Mediterranean Sea was sampled during the Medinaut cruise of the R/V Nadir in 1998. The composition of the mat community was characterized using a combination of phylogenetic and lipid biomarker methods. The mat sample was filtered through 0.2 and 5-microm filters to coarsely separate unicellular and filamentous bacteria. Analyses of 16S rRNA gene sequences amplified from the total community DNA from these fractions showed that similar archaeal populations were present in both fractions. However, the bacterial populations in the fractions differed from one another, and were more diverse than the archaeal ones. Lipid analysis showed that bacteria were the dominant members of the mat microbial community and the relatively low delta(13)C carbon isotope values of bulk bacterial lipids suggested the occurrence of methane- and sulfide-based chemo(auto)trophy. Consistent with this, the bacterial populations in the fractions were related to Alpha-, Gamma- and Epsilonproteobacteria, most of which were chemoautotrophic bacteria that utilize hydrogen sulfide (or reduced sulfur compounds) and/or methane. The most common archaeal 16S rRNA gene sequences were related to those of previously identified Archaea capable of anaerobic methane oxidation. Although the filamentous organisms observed in the mat were not conclusively identified, our results indicated that the Eastern Mediterranean deep-sea microbial mat community might be sustained on a combination of methane- and sulfide-driven chemotrophy.  相似文献   

12.
Diurnal cycles of sulfate reduction were examined in a well-developed cyanobacterial mat which grew in an outdoor experimental hypersaline pond system at a constant salinity of 75 ± 5% for 3 years. Vertical profiles of sulfate reduction were determined for the upper 12 mm of the microbial mat. Sulfate reduction activities were compared with diurnal variations of oxygen and sulfide concentrations measured by microelectrodes. Significant activity of sulfate-reducing bacteria was detected under aerobic conditions during the daytime, with maximal activity at 2 p.m. When comparing sulfate reduction activities in sediment cores taken at 6 a.m. and 12 a.m. and incubated at a constant temperature in the light and in the dark, a distinct stimulation of the activity in the vertical profile of sulfate reduction by light was evident. It is therefore concluded that the maximal in situ activities, measured at 2 p.m. in the chemocline of the cyanobacterial mat, cannot be attributed to diurnal changes of temperature alone. The response of sulfate-reducing bacteria to the addition of specific carbon sources was significantly different in the cyanobacterial layer, the anoxygenic phototrophic bacterial layer, and the permanently reduced layer of the microbial mat. Sulfate reduction in the mat layer exposed to high oxygen concentrations as a result of cyanobacterial oxygenic photosynthesis was enhanced only by glycolate; in the microzone where the chemocline is found during the daytime, ethanol was the only carbon source to enhance sulfate reduction, while both ethanol and lactate enhanced this activity in the permanently reduced zone.  相似文献   

13.
Beggiatoa species are filamentous sulfide-oxidizing bacteria belonging to the family Beggiatoaceae that contains several largest bacteria known today. These large sulfur bacteria occur in diverse ecosystems and play an important role in the global sulfur, nitrogen and phosphorus cycle. In this study, sediment samples from brackishwater shrimp culture ponds and other brackishwater ecosystems from Tamil Nadu, southeast coast of India, were enriched for Beggiatoa species. Extracted hay medium supplemented with catalase was used and were incubated for two weeks at 28°C. Out of seven set-ups, four yielded positive growth of filamentous sulfide-oxidizing bacteria. The filaments were several millimeters long, ranged in width between 2 and 15μm and exhibited typical gliding motility. The 16S rRNA gene of four single filaments representing the four positive enrichments was subjected to PCR-DGGE followed by sequencing. All four filaments were affiliated to the Beggiatoaceae, but showed less than 89% identity with the Beggiatoa type strain Beggiatoa alba and less than 93% identity with any other sequence of the family. One of the four filaments revealed a nearly full-length 16S rDNA sequence (1411bp) and it formed a monophyletic cluster with two of the partial DGGE-16S rRNA gene sequences (99-100% identity) within the Beggiatoa species cluster. These organisms could possibly represent a novel genus within the family Beggiatoaceae. The fourth partial sequence affiliated with less than 93% sequence identity to the genera Parabeggiatoa, Thioploca and Thiopilula, and was likewise strongly delineated from any sequence published in the family.  相似文献   

14.
This study has utilized the tools of lipid biomarker chemistry and molecular phylogenetic analyses to assess the archaeal contribution to diversity and abundance within a microbial mat and underlying sediment from a hypersaline lagoon in Baja California. Based on abundance of ether-linked isoprenoids, archaea made up from 1 to 4% of the cell numbers throughout the upper 100 mm of mat and sediment core. Below this depth archaeal lipid was two times more abundant than bacterial. Archaeol was the primary archaeal lipid in all layers. Relatively small amounts of caldarchaeol (dibiphytanyl glyceroltetraether) were present at most depths with phytanyl to biphytanyl molar ratios lowest (~10 : 1) in the 4–17 mm and 100–130 mm horizons, and highest (132 : 1) in the surface 0–2 mm. Lipids with cyclic biphytanyl cores were only detected below 100 mm. A novel polar lipid containing a C30 isoprenoid (squalane) moiety was isolated from the upper anoxic portion of the core and partially characterized. Hydrocarbon biomarker lipids included pentamethylicosane (2–10 mm) and crocetane (primarily below 10 mm). Archaeal molecular diversity varied somewhat with depth. With the exception of samples at 0–2 mm and 35–65 mm, Thermoplasmatales of marine benthic group D dominated clone libraries. A significant number of phylotypes representing the Crenarchaeota from marine benthic group B were generally present below 17 mm and dominated the 35–65 mm sample. Halobacteriaceae family made up 80% of the clone library of the surface 2 mm, and consisted primarily of sequences affiliated with the haloalkaliphilic Natronomonas pharaonis .  相似文献   

15.
Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains of filamentous, gliding sulfate-reducing bacteria, Tokyo 01 and Jade 02, were isolated in pure cultures. Both isolates oxidized acetate and other aliphatic acids. Enzyme assays indicated that the terminal oxidation occurs via the anaerobic C1 pathway (carbon monoxide dehydrogenase pathway). The 16S rRNA genes of the new isolates and of the two formerly described filamentous species of sulfate-reducing bacteria, Desulfonema limicola and Desulfonema magnum, were analyzed. All four strains were closely related to each other and affiliated with the δ-subclass of Proteobacteria. Another close relative was the unicellular Desulfococcus multivorans. Based on phylogenetic relationships and physiological properties, Strains Tokyo 01 and Jade 02 are assigned to a new species, Desulfonema ishimotoi. A new, fluorescently labeled oligonucleotide probe targeted against 16S rRNA was designed so that that it hybridized specifically with whole cells of Desulfonema species. Filamentous bacteria that hybridized with the same probe were detected in sediment samples and in association with the filamentous sulfur-oxidizing bacterium Thioploca in its natural habitat. We conclude that Desulfonema species constitute an ecologically significant fraction of the sulfate-reducing bacteria in organic-rich sediments and microbial mats. Received: 30 December 1998 / Accepted: 19 July 1999  相似文献   

16.
At the Nakabusa hot spring, Japan, dense olive-green microbial mats develop in regions where the slightly alkaline, sulfidic effluent has cooled to 65 °C. The microbial community of such mats was analyzed by focusing on the diversity, as well as the in situ distribution and function of bacteria involved in sulfur cycling. Analyses of 16S rRNA and functional genes (aprA, pufM) suggested the importance of three thermophilic bacterial groups: aerobic chemolithotrophic sulfide-oxidizing species of the genus Sulfurihydrogenibium (Aquificae), anaerobic sulfate-reducing species of the genera Thermodesulfobacterium/Thermodesulfatator, and filamentous anoxygenic photosynthetic species of the genus Chloroflexus. A new oligonucleotide probe specific for Sulfurihydrogenibium was designed and optimized for catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). In situ hybridizations of thin mat sections showed a heterogeneous vertical distribution of Sulfurihydrogenibium and Chloroflexus. Sulfurihydrogenibium dominated near the mat surface (50% of the total mat biovolume), while Chloroflexus dominated in deeper layers (up to 64% of the total mat biovolume). Physiological experiments monitoring in vitro changes of sulfide concentration indicated slight sulfide production by sulfate-reducing bacteria under anoxic-dark conditions, sulfide consumption by photosynthetic bacteria under anoxic-light conditions and strong sulfide oxidation by chemolithotrophic members of Aquificae under oxic-dark condition. We therefore propose that Sulfurihydrogenibium spp. act as highly efficient scavengers of oxygen from the spring water, thus creating a favorable, anoxic environment for Chloroflexus and Thermodesulfobacterium/Thermodesulfatator in deeper layers.  相似文献   

17.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

18.
Abstract. Specimens of the sponge Tethya orphei , collected in February 2005 on the underside of coral stones on Arì Athol (Maldives), have been processed for histological and ultrastructural investigations. The cortical layer of the sponge was found to be permeated by filamentous cyanobacteria, the trichomes of which measured 45–63 μm on average and were composed of 10–14 cells. The fine organization of the filaments was consistent with their taxonomic identification as Oscillatoria spongeliae. These filaments filled the cortical region of the sponge and penetrated inward into the upper choanosomal region, where they sometimes overlapped the siliceous spicule bundles. A budding specimen of T. orphei showed that the filaments were also present in the single bud protruding from the sponge surface, demonstrating that asexual reproduction can vertically transmit these symbionts from sponge to sponge. The occurrence of filaments in all the specimens studied is consistent with the assumption that filamentous cyanobacteria are not mere intruders but mutualistic symbionts with members of T. orphei.  相似文献   

19.
The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 106 and 107 cultivable sulfate-reducing bacteria ml−1 and showed sulfate reduction rates between 1,000 and 2,200 nmol ml−1 day−1, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 104 to 106 cells ml−1. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO2 demand of the mat.  相似文献   

20.
Abstract The occurrence and properties were studied of glucose-metabolizing bacteria present in the anaerobic sediment 5–10 cm below the surface of an estuarine tidal mud-flat. Of all these bacteria (104– 105 per g wet sediment) 80–90% were facultatively anaerobic species. Chemostat enrichments on glucose under aerobic, oxygen-limited and alternately aerobic-anaerobic conditions also yielded cultures dominated by facultative anaerobes. One of the dominant species, tentatively identified as a Vibrio sp., was studied in more detail under oxygen-limiting conditions. Fermentative and respiratory metabolisms were found to operate simultaneously, and the ratio between the two was regulated by the extent of oxygen limitation. A small fraction of the acetate formed under such growth conditions was shown to be subsequently respired. A co-culture was established of the Vibrio sp. and a sulfate-reducing bacterium ( Desulfovibrio HL21 ) in an aerated chemostat. The importance of these observations is discussed in relation to the role of facultative anaerobes in anaerobic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号