首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two distinct oxysterol binding protein (OSBP)-related proteins (ORPs) have been identified from the parasitic protist Cryptosporidium parvum (CpORP1 and CpORP2). The short-type CpOPR1 contains only a ligand binding (LB) domain, while the long-type CpORP2 contains Pleckstrin homology (PH) and LB domains. Lipid-protein overlay assays using recombinant proteins revealed that CpORP1 and CpORP2 could specifically bind to phosphatidic acid (PA), various phosphatidylinositol phosphates (PIPs), and sulfatide, but not to other types of lipids with simple heads. Cholesterol was not a ligand for these two proteins. CpOPR1 was found mainly on the parasitophorous vacuole membrane (PVM), suggesting that CpORP1 is probably involved in the lipid transport across this unique membrane barrier between parasites and host intestinal lumen. Although Cryptosporidium has two ORPs, other apicomplexans including Plasmodium, Toxoplasma, and Eimeria possess only a single long-type ORP, suggesting that this family of proteins may play different roles among apicomplexans.  相似文献   

3.
棉铃虫感觉神经元膜蛋白基因克隆和表达   总被引:1,自引:1,他引:0  
从棉铃虫Helicoverpa armigera触角中克隆了一条全长1 690 bp的cDNA序列,该序列阅读框全长1 572 bp,编码523个氨基酸残基,序列中有2个跨膜区,具有昆虫感觉神经元膜蛋白(sensory neuron membrane protein, SNMP)的典型特征。SNMP与已报道的其他昆虫的感觉神经元蛋白的氨基酸序列有很高的同源性。半定量RT-PCR研究结果显示,SNMP在棉铃虫中不仅在触角中表达,也在去掉触角的头、足中表达。但是在触角中的表达量最高,在雌雄触角中的表达量差异不显著。在喙、下颚须和下唇须中也有表达。SNMP在卵、蛹和成虫体内也都有表达,但在卵中表达量相对较低。将SNMP编码区克隆到表达载体pET21b中,成功地进行了原核表达,表达出带有6个组氨酸标签的重组蛋白。  相似文献   

4.
In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins.  相似文献   

5.
In previous studies, involving molecular modeling of wild-type and oncogenic forms of the ras-p21 protein bound to GTPase activating protein GAP and the ras-specific guanine nucleotide exchange-promoting protein, SOS, we identified specific domains of GAP and SOS proteins that differ in conformation when the computed average structures of the corresponding wild-type and oncogenic complexes are superimposed. Additionally, in these previous studies, we have synthesized peptides corresponding to these domains and found that all of them inhibit either or both oncogenic (Val 12-containing) p21- and insulin-activated wild-type p21-induced oocyte maturation. To document further the specificity of the inhibition of these peptides for the ras signal transduction pathway, we have now tested their effects on progesterone-induced maturation that occurs by a ras-independent pathway. None of these peptides, including a peptide corresponding to residues 980–989 of SOS that completely blocks oncogenic p21-induced maturation and also causes extensive inhibition of insulin-induced maturation, affects progesterone-induced maturation, suggesting that all of these peptides are specific for the ras pathway. Since our approach to the design of peptides that can inhibit oncogenic ras-p21 selectively is based on identifying domains that differ in conformation between oncogenic and wild-type complexes, we have now further synthesized peptides that correspond to domains of GAP (residues 903–910) and SOS (residues 792–804) that do not differ in conformation when the average structures are superimposed. These peptides do not inhibit either oncogenic p21- or insulin-induced oocyte maturation, supporting the overall strategy of using peptides from domains that change conformation as the ones most likely to inhibit oncogenic and/or wild-type ras-p21. These results further support the specificity of inhibition of the GAP and SOS peptides from the conformationally distinct domains of both proteins.  相似文献   

6.
7.
8.
9.
10.
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.  相似文献   

11.
The light-sensitive chlorophyll b (Chl b)-deficient oil yellow-yellow green (OY-YG) mutant of maize (Zea mays) grown under conditions of high light exhibits differential reductions in the accumulation of the three major Chl b-containing antenna complexes and characteristic changes in thylakoid architecture. When observed by freeze-fracture electron microscopy, the most notable changes in the OY-YG thylakoid structure are: (a) a major reduction in the number of 8 nanometer particles of the protoplasmic fracture face of stacked membrane regions (PFs) paralleled by a 60% reduction in the chlorophyll-proteins (CP) associated with the peripheral light harvesting complex (LHCII) for photosystem II (PSII) and which give rise to the LHCII oligomer/monomer (CPII*/CPII) bands on mildly dissociated green gels; (b) a sizable decrease in the proportion of 11 to 13 nanometer particles of the protoplasmic fracture face of unstacked membrane regions (PFu) that parallels the loss of light harvesting complex I (LHCI) antennae from photosystem I (PSI) centers and a 40% reduction of the band containing CP1 and LHCI (CPI*) on mildly dissociating green gels; (c) an unchanged or slightly increased average size of particles of the exoplasmic fracture face of stacked (or appressed) membrane regions (EFs) along with a relative increase in CP29, the postulated bound LHC of PSII, and of CP47 and CP43, PSII core antenna complexes. This latter result sets the OY-YG mutant apart from all other Chl b-deficient mutants studied to date, all of which possess EFs particles that are substantially reduced in size. Based on these findings, we postulate that the bound LHCII associated with EFs particles consists mostly of CP29 chlorophyll proteins and very little, if any, CPII*/CPII chlorophyll proteins. Indeed, the CPII*/CPII chlorophyll proteins may be exclusively associated with the `peripheral' LHCII units that give rise to 8 nanometer PF particles. The differential effect of the Chl b deficiency on the accumulation of the three main antenna complexes (CPII*/CPII>CPI*>CP29) suggests, furthermore, that there is a hierarchy among Chl b-binding proteins, and that this hierarchy might be an integral part of long-term photoregulation mediating Chl b partitioning in the chloroplast.  相似文献   

12.
In plasma membranes, most of glycosylphosphatidylinositol (GPI)-anchored proteins would be associated with rafts, a category of ordered microdomains enriched in sphingolipids and cholesterol (Ch). They would be also concentrated in the detergent resistant membranes (DRMs), a plasma membrane fraction extracted at low temperature. Preferential localization of GPI-anchored proteins in these membrane domains is essentially governed by their high lipid order, as compared to their environment. Changes in the temperature are expected to modify the membrane lipid order, suggesting that they could affect the distribution of GPI-anchored proteins between membrane domains. Validity of this hypothesis was examined by investigating the temperature-dependent localization of the GPI-anchored bovine intestinal alkaline phophatase (BIAP) into model raft made of palmitoyloleoylphosphatidylcholine/sphingomyelin/cholesterol (POPC/SM/Chl) supported membranes. Atomic force microscopy (AFM) shows that the inserted BIAP is localized in the SM/Chl enriched ordered domains at low temperature. Above 30 degrees C, BIAP redistributes and is present in both the 'fluid' POPC enriched and the ordered SM/Chl domains. These data strongly suggest that in cells the composition of plasma membrane domains at low temperature differs from that at physiological temperature.  相似文献   

13.
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.  相似文献   

14.
During thylakoid membrane biogenesis, chlorophyll (Chl) biosynthesis and the accumulation of Chl-binding proteins are tightly linked, light-regulated processes. We have investigated the consequences faced by mutant plants with defects in Chl biosynthesis by studying a series of five homeologous allelic chlorina mutants in wheat (Triticum) and one phenotypically related barley (Hordeum vulgare) mutant that express the same pleiotropic mutant phenotype but to different extents. These mutants accumulate Chl at different rates, with the most severely affected plants having the slowest rate of Chl accumulation. Analysis of precursor pools in the Chl synthesis pathway indicates they have a partial block in Chl synthesis and accumulate protoporphyrin IX (Proto), the last porphyrin compound common to both heme and Chl synthesis. The affected plants with the most severe phenotypes accumulate the most Proto. Chloroplasts isolated from these mutants exhibit a lower activity of the enzyme Mg-chelatase, which catalyzes the first committed step in Chl synthesis. The most severely affected plants exhibit the greatest reduction in Mg-chelatase activity. Heme levels and protoporphyrinogen oxidase activity were the same for mutant and wild-type plants. We suggest that a block in Mg-chelatase activity in these mutants could account for the other traits of their pleiotropic phenotype previously described in the literature.  相似文献   

15.
Various plants possess non-photosynthetic, hydrophilic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins (WSCPs). WSCPs are categorized into two classes; Class I (photoconvertible type) and Class II (non-photoconvertible type). Among Class II WSCPs, only Lepidium virginicum WSCP (LvWSCP) exhibits a low Chl a/b ratio compared with that found in the leaf. Although the physicochemical properties of LvWSCP have been characterized, its molecular properties have not yet been documented. Here, we report the characteristics of the LvWSCP gene, the biochemical properties of a recombinant LvWSCP, and the intracellular localization of LvWSCP. The cloned LvWSCP gene possesses a 669-bp open reading frame. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis revealed that the precursor of LvWSCP contains both N- and C-terminal extension peptides. RT-PCR analysis revealed that LvWSCP was transcribed in various tissues, with the levels being higher in developing tissues. A recombinant LvWSCP and hexa-histidine fusion protein (LvWSCP-His) could remove Chls from the thylakoid in aqueous solution and showed an absorption spectrum identical to that of native LvWSCP. Although LvWSCP-His could bind both Chl a and Chl b, it bound almost exclusively to Chl b when reconstituted in 40 % methanol. To clarify the intracellular targeting functions of the N- and C-terminal extension peptides, we constructed transgenic Arabidopsis thaliana lines expressing the Venus protein fused with the LvWSCP N- and/or C-terminal peptides, as well as Venus fused at the C-terminus of LvWSCP. The results showed that the N-terminal peptide functioned in ER body targeting, while the C-terminal sequence did not act as a trailer peptide.  相似文献   

16.

Background  

Light harvesting complex (LHC) proteins function in photosynthesis by binding chlorophyll (Chl) and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs.  相似文献   

17.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences.  相似文献   

18.
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.  相似文献   

19.
Various plants possess hydrophilic chlorophyll (Chl) proteins known as water-soluble Chl-binding proteins (WSCPs). WSCPs exist in two forms: Class I and Class II, of which Class I alone exhibits unique photoconvertibility. Although numerous genes encoding Class II WSCPs have been identified and the molecular properties of their recombinant proteins have been well characterized, no Class I WSCP gene has been identified to date. In this study, we cloned the cDNA and a gene encoding the Class I WSCP of Chenopodium album (CaWSCP). Sequence analyses revealed that CaWSCP comprises a single exon corresponding to 585 bp of an open reading frame encoding 195 amino acid residues. The CaWSCP protein sequence possesses a signature of DUF538, a protein superfamily of unknown function found almost exclusively in Embryophyta. The recombinant CaWSCP was expressed in Escherichia coli as a hexa-histidine fusion protein (CaWSCP-His) that removes Chls from the thylakoid. Under visible light illumination, the reconstituted CaWSCP-His was successfully photoconverted into a different pigment with an absorption spectrum identical to that of native CaWSCP. Interestingly, while CaWSCP-His could bind both Chl a and Chl b, photoconversion occurred only in CaWSCP-His reconstituted with Chl a.  相似文献   

20.
Sobotka R  Tichy M  Wilde A  Hunter CN 《Plant physiology》2011,155(4):1735-1747
Ferrochelatase (FeCH) catalyzes the insertion of Fe(2+) into protoporphyrin, forming protoheme. In photosynthetic organisms, FeCH and magnesium chelatase lie at a biosynthetic branch point where partitioning down the heme and chlorophyll (Chl) pathways occurs. Unlike their mammalian, yeast, and other bacterial counterparts, cyanobacterial and algal FeCHs as well as FeCH2 isoform from plants possess a carboxyl-terminal Chl a/b-binding (CAB) domain with a conserved Chl-binding motif. The CAB domain is connected to the FeCH catalytic core by a proline-rich linker sequence (region II). In order to dissect the regulatory, catalytic, and structural roles of the region II and CAB domains, we analyzed a FeCH ΔH347 mutant that retains region II but lacks the CAB domain and compared it with the ΔH324-FeCH mutant that lacks both these domains. We found that the CAB domain is not required for catalytic activity but is essential for dimerization of FeCH; its absence causes aberrant accumulation of Chl-protein complexes under high light accompanied by high levels of the Chl precursor chlorophyllide. Thus, the CAB domain appears to serve mainly a regulatory function, possibly in balancing Chl biosynthesis with the synthesis of cognate apoproteins. Region II is essential for the catalytic function of the plastid-type FeCH enzyme, although the low residual activity of the ΔH324-FeCH is more than sufficient to furnish the cellular demand for heme. We propose that the apparent surplus of FeCH activity in the wild type is critical for cell viability under high light due to a regulatory role of FeCH in the distribution of Chl into apoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号