首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peptide synthesis was carried out in a variety of organic solvents with low contents of water. The enzyme was deposited on the support material, celite, from an aqueous buffer solution. After evaporation of the water the biocatalyst was suspended in the reaction mixtures. The chymotrypsin-catalyzed reaction between Z-Phe-OMe and Leu-NH2 was used as a model reaction. Under the conditions used ([Z-Phe-OMe]0 less than or equal to 40 mM, [Leu-NH2]0/([Z-Phe-OMe]0 = 1.5) the reaction was first order with respect to Z-Phe-OMe. Tris buffer, pH 7.8, was the best buffer to use in the preparation of the biocatalyst. In water-miscible solvents the reaction rate increased with increasing water content, but the final yield of peptide decreased due to the competing hydrolysis of Z-Phe-OMe. Among the water-miscible solvents, acetonitrile was the most suitable, giving 91% yield with 4% (by vol.) water. In water-immiscible solvents the reaction rate and the product distribution were little affected by water additions in the range between 0% and 2% (vol. %) in excess of water saturation. The reaction rates correlated well with the log P values of the solvent. The highest yield (93%) was obtained in ethyl acetate; in this solvent the reaction was also fast. Under most reaction conditions used the reaction product was stable; secondary hydrolysis of the peptide formed was normally negligible. The method presented is a combination of kinetically controlled peptide synthesis (giving high reaction rates) and thermodynamically controlled peptide synthesis (giving stable reaction products).  相似文献   

2.
A simultaneous synthesis of biodiesel, as fatty acid methyl esters, and monoacylglycerols catalysed by the recombinant Rhizopus oryzae lipase immobilized by adsorption on Relizyme OD/403M is presented. The use of this 1(3)-positional specific lipase prevents the formation of glycerol as a by-product, thus avoiding its drawbacks. The synthesis was carried out in a solvent-free system and it has been studied in two different reactor systems: stirred tank and packed-bed reactor. Stirred tank reactor presented a high-initial reaction rate and achieved a 33.6% yield, which corresponds to a value of 50.4% of the maximum yield that can be achieved with a 1(3)-positional specific lipase. In packed-bed reactor there was a smaller initial reaction rate, but it was achieved a 49.1% yield, which corresponds to a 73.6% of the maximum yield. When a second batch is performed, the yield decreased only 4% when packed-bed reactor is employed whereas a drastic decrease is observed in a stirred tank operation. Therefore, packed-bed reactor showed a best performance and minor damage to the biocatalyst.  相似文献   

3.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide, Z-Asp-Val-NH(2) of thymopentin (TP-5), in organic solvents was studied. Z-Asp-OMe and Val-NH(2) were used as the acyl donor and the nucleophile, respectively. An industrial alkaline protease alcalase was used to catalyze the synthesis of the target dipeptide in water-organic cosolvent systems. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including organic solvents, water content, temperature, pH, and reaction time on the yield of Z-Asp-Val-NH(2). The optimum conditions using alcalase as the catalyst are pH 10.0, 35 degrees C, in acetonitrile/Na(2)CO(3)-NaHCO(3) buffer system (9:1, V/V), reaction time 5 h, with a yield of 63%. The dipeptide product was confirmed by LC- MS.  相似文献   

4.
An enzymatic process using a packed bed bioreactor with recirculation was developed for the scale-up synthesis of 2-ethylhexyl palmitate with a lipase from Candida sp. 99–125 immobilized on a fabric membrane by natural attachment to the membrane surface. Esterification was effectively performed by circulating the reaction mixture between a packed bed column and a substrate container. A maximum esterification yield of 98% was obtained. Adding molecular sieves and drying the immobilized lipase both decreased the water content at the reactor outlet and around the enzyme, which led to an increase in the rate of esterification. The long-term stability of the reactor was tested by continuing the reaction for 30 batches (over 300 h) with an average esterification yield of about 95%. This immobilized lipase bioreactor is scalable and is thus suitable for industrial production of 2-ethylhexyl palmitate.  相似文献   

5.
Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.  相似文献   

6.
The ultrasound-accelerated enzymatic synthesis of octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol was investigated in this study. A commercially available immobilized lipase from Candida antarctica, Novozym 435, was used as the biocatalyst. A three-level-three-factor Box-Behnken design experiment and response surface methodology were used to evaluate the effects of temperature, reaction time, and enzyme activity on percent yield of OHPP. The results indicated that temperature and enzyme activity significantly affected percent yield, whereas reaction time did not. A model for the synthesis of OHPP was established. Based on a ridge max analysis, the optimum conditions for OHPP synthesis were predicted to use a reaction temperature of 58.8°C, a reaction time of 14.6 h, and an enzyme activity of 410.5 PLU with a yield of 98.5%. A reaction was performed under these optimal conditions, and a yield of 97.5% ± 0.1% was obtained.  相似文献   

7.
The synthesis is described of a globotetraose trimer in 74% yield by the reaction of tris(2-aminoethyl)amine with the hydrophobic squaric decyl ester glycoside of globotetraose. The synthesis was readily monitored and purified using reversed phase HPLC. Unreacted squaric decyl ester globotetraoside was recovered rendering the method highly economical.  相似文献   

8.
Somatostatin analogues, such as octreotide, are useful for the visualization and treatment of tumors. Unfortunately, these compounds were produced synthetically using complex and inefficient procedures. Here, we describe a novel approach for the synthesis of octreotide and its analogues using p-carboxybenzaldehyde to anchor Fmoc-threoninol to solid phase resins. The reaction of the two hydroxyl groups of Fmoc-threoninol with p-carboxybenzaldehyde was catalyzed with p-toluenesulphonic acid in chloroform using a Dean-Stark apparatus to form Fmoc-threoninol p-carboxybenzacetal in 91% yield. The Fmoc-threoninol p-carboxybenzacetal acted as an Fmoc-amino acid derivative and the carboxyl group of Fmoc-threoninol p-carboxybenzacetal was coupled to an amine-resin via a DCC coupling reaction. The synthesis of protected octreotide and its conjugates were carried out in their entirety using a conventional Fmoc protocol and an autosynthesizer. The acetal was stable during the stepwise elongation of each Fmoc-amino acid as shown by the averaged coupling yield (> 95%). Octreotide (74 to 78% yield) and five conjugated derivatives were synthesized with high yields using this procedure, including three radiotherapy octreotides (62 to 75% yield) and two cellular markers (72 to 76% yield). This novel approach provides a strategy for the rapid and efficient large-scale synthesis of octreotide and its analogues for radiopharmaceutical and tagged conjugates.  相似文献   

9.
The precursor of Leu-enkephalin, Z-L-TyrGlyGly-L-Phe-L-LeuOEt, was synthesized from amino acid derivatives with three proteinases without the protection of the side chain of L-Tyr. First, Z-GlyGlyOBut and Z-L-TyrGlyGlyOBut were synthesized in quite a high yield, 83% and 99%, in an aqueous/organic biphasic system by papain and alpha-chymotrypsin, respectively. Then, Z-L-Phe-L-LeuOEt was synthesized by thermolysin from Z-L-Phe and L-LeuOEt either in buffer or in a biphasic system; the yields were 95% and 100%, respectively. The synthesis of Z-L-TyrGlyGly-L-Phe-L-LeuOEt from Z-L-TyrGlyGly and L-Phe-L-LeuOEt was performed effectively by thermolysin immobilized on Amberlite XAD-7 in a buffer and in an aqueous/organic biphasic system, as well as in saturated ethyl acetate, while the yield was low in reactions by free thermolysin. In the reaction with the immobilized enzyme (IME) in saturated ethyl acetate, the maximum yield of the precursor of Leu-enkephalin was 68%. The reasons for effective synthesis with IME are: (1) higher concentration of L-Phe-L-LeuOEt inside support, which resulted in rising the rate of the synthesis reaction and protecting the competitive hydrolysis of Z-L-TyrGlyGly by thermolysin, (2) entrapment of the product inside the support where thermolysin could not act in the case of reaction in buffer, and (3) extraction of the product with the organic solvent in the case of reaction in a biphasic system or in saturated organic solvent.  相似文献   

10.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

11.
The enzymatic synthesis of the tripeptide derivative Z-Gly-Trp-Met-OEt is reported. This tripeptide is a fragment of the cholecystokinin C-terminal octapeptide CCK-8. Studies on the alpha-chymotrypsin catalyzed coupling reaction between Z-Gly-Trp-R(1) and Met-R(2) have focused on low water content media, using deposited enzyme on inert supports such as Celite and polyamide. The effect of additives (polar organic solvents), the acyl-donor ester structure, the C-alpha protecting group of the nucleophile, enzyme loading, and substrate concentration were tested. The best reaction medium found was acetonitrile containing buffer (0.5%, v/v) and triethylamine (0.5%, v/v) using the enzyme deposited on Celite as catalyst (8 mg of alpha-chymotrypsin/g of Celite). A reaction yield of 81% was obtained with Z-Gly-Trp-OCam as acyl donor, at an initial concentration of 80 mM. The tripeptide synthesis was scaled up to the production of 2 g of pure tripeptide with an overall yield of 71%, including reaction and purification steps. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
The synthesis reaction of the peptide, N-Cbz-L-tryptophanyl-glycineamide, catalyzed by alpha-chymotrypsin was performed in a 20% water/80%, 1,4-butanediol mixture. The synthesis yield reached 90.9% at the end of the reaction and 72.3% after purification. The effects on the yield of both pH and the ratio between total initial concentrations of glycineamide and N-Cbz-L-tryptophan are examined. The high yield, specificity, simplicity and reproducibility of this method make it complementary of the chemical methods.  相似文献   

13.
Whole cells of alkaliphilic Bacillus pseudofirmus AR-199, induced for beta-galactosidase activity, were used for the synthesis of 1-hexyl-beta-d-galactoside and 1-octyl-beta-d-galactoside, respectively, by transglycosylation reaction between lactose and the corresponding alcohol acceptor. The product yield was strongly influenced by the initial water content in the reaction mixture. Water content of 10% (v/v) was optimal providing 3.6-36 mM hexyl galactoside from 10 to 150 mM lactose, and no secondary product hydrolysis. Product yield could be enhanced by supplementing the reaction mixture with more cells or partly replacing the product with fresh substrate, but was decreased with time to the initial equilibrium level. Cell permeabilisation or disruption resulted in increased reaction rate and higher product yield but was followed by product hydrolysis. Octyl galactoside synthesis using whole cells was optimal at water content of 2% (v/v) with a yield of 26%. The cells were immobilised in cryogels of polyvinyl alcohol for use in continuous process, where hexyl galactoside was produced with a constant yield of 50% from 50mM lactose for at least a week.  相似文献   

14.
This study examined the efficient production and optimal separation procedures for pure L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS) from a mixture of diastereomers synthesized by whole-cell aldol condensation reaction, harboring diastereoselectivity-enhanced L-threonine aldolase in Escherichia coli JM109. The addition of the reducing agent sodium sulfite was found to stimulate the production of L-threo-DOPS without affecting the diastereoselectivity ratio, especially at the 50 mM concentration. The optimal pH for diastereoselective synthesis was 6.5. The addition of Triton X-100 also strongly affected the synthesis yield, showing the highest conversion yield at a 0.75% concentration; however, the diastereoselectivity of the L-threonine aldolase was not affected. Lowering the temperature to 10°C did not significantly affect the diastereoselectiviy without affecting the synthesis rate. At the optimized conditions, a mixture of L-threo-DOPS and L-erythro-DOPS was synthesized by diastereoselectivity-enhanced L-threonine aldolase from E. coli in a continuous process for 100 hr, yielding an average of 4.0 mg/mL of L-threo-DOPS and 60% diastereoselectivity (de), and was subjected to two steps of ion exchange chromatography. The optimum separation conditions for the resin and solvent were evaluated in which it was found that a two-step process with the ion-exchange resin Dowex 50 W × 8 and activated carbon by washing with 0.5 N acetic acid was sufficient to separate the L-threo-DOPS. By using two-step ion-exchange chromatography, synthesized high-purity L-threo-DOPS of up to 100% was purified with a yield of 71%. The remaining substrates, glycine and 3,4-dihydroxybenzaldehyde, were recovered successfully with a yield of 71.2%. Our results indicate this potential procedure as an economical purification process for the synthesis and purification of important L-threo-DOPS at the pharmaceutical level.  相似文献   

15.
Integrated process concepts for enzymatic cephalexin synthesis were investigated by our group, and this article focuses on the integration of reactions and product removal during the reactions. The last step in cephalexin production is the enzymatic kinetic coupling of activated phenylglycine (phenylglycine amide or phenylglycine methyl ester) and 7-aminodeacetoxycephalosporanic acid (7-ADCA). The traditional production of 7-ADCA takes place via a chemical ring expansion step and an enzymatic hydrolysis step starting from penicillin G. However, 7-ADCA can also be produced by the enzymatic hydrolysis of adipyl-7-ADCA. In this work, this reaction was combined with the enzymatic synthesis reaction and performed simultaneously (i.e., one-pot synthesis). Furthermore, in situ product removal by adsorption and complexation were investigated as means of preventing enzymatic hydrolysis of cephalexin. We found that adipyl-7-ADCA hydrolysis and cephalexin synthesis could be performed simultaneously. The maximum yield on conversion (reaction) of the combined process was very similar to the yield of the separate processes performed under the same reaction conditions with the enzyme concentrations adjusted correctly. This implied that the number of reaction steps in the cephalexin process could be reduced significantly. The removal of cephalexin by adsorption was not specific enough to be applied in situ. The adsorbents also bound the substrates and therewith caused lower yields. Complexation with beta-naphthol proved to be an effective removal technique; however, it also showed a drawback in that the activity of the cephalexin-synthesizing enzyme was influenced negatively. Complexation with beta-naphthol rendered a 50% higher cephalexin yield and considerably less byproduct formation (reduction of 40%) as compared to cephalexin synthesis only. If adipyl-7-ADCA hydrolysis and cephalexin synthesis were performed simultaneously and in combination with complexation with beta-naphthol, higher cephalexin concentrations also were found. In conclusion, a highly integrated process (two reactions simultaneously combined with in situ product removal) was shown possible, although further optimization is necessary.  相似文献   

16.
Trypsin-catalyzed, kinetically controlled synthesis of a precursor, dipeptide of thymopentin (TP-5), Bz-Arg-Lys-OH (or-OEt) in organic solvents was studied. Bz-Arg-OEt was used as the acyl donor and Lys-OH and Lys-OEt were used as the nucleophiles. Ethanol was selected as the organic solvent from ethanol, methanol, acetonitrile, and ethyl acetate tested under the experimental conditions. As expected, Lys-OEt is not a suitable nucleophile in trypsin-catalyzed reaction, due to its competition with the protective Arg-OEt as acyl donor for the active site of trypsin, while Lys-OH does not have this problem. The optimal reaction condition for the synthesis of Bz-Arg-Lys-OH was set up as 20% Tris-HCl buffer, pH 8.0, 35 degrees C for 6 h with the yield of 52.5%, or for 18-24 h with the yield of about 60%.  相似文献   

17.
Whole cells of alkaliphilic Bacillus pseudofirmus AR-199, induced for β-galactosidase activity, were used for the synthesis of 1-hexyl-β- -galactoside and 1-octyl-β- -galactoside, respectively, by transglycosylation reaction between lactose and the corresponding alcohol acceptor. The product yield was strongly influenced by the initial water content in the reaction mixture. Water content of 10% (v/v) was optimal providing 3.6–36 mM hexyl galactoside from 10 to 150 mM lactose, and no secondary product hydrolysis. Product yield could be enhanced by supplementing the reaction mixture with more cells or partly replacing the product with fresh substrate, but was decreased with time to the initial equilibrium level. Cell permeabilisation or disruption resulted in increased reaction rate and higher product yield but was followed by product hydrolysis. Octyl galactoside synthesis using whole cells was optimal at water content of 2% (v/v) with a yield of 26%. The cells were immobilised in cryogels of polyvinyl alcohol for use in continuous process, where hexyl galactoside was produced with a constant yield of 50% from 50 mM lactose for at least a week.  相似文献   

18.
In this study, an efficient enzymatic process for the synthesis of 4-hydroxyphenylacetaldehyde (4-HPAA) from tyramine was developed using whole cells of recombinant Escherichia coli co-expressing primary amine oxidase (PrAO) from E. coli and catalase (CAT) from Bacillus pumilus. The reaction conditions for the synthesis of 4-HPAA were systematically optimized starting from a monophasic aqueous buffer. The optimum reaction temperature, pH, and biocatalyst loading were 33 °C, 7.5, and 20 g/L wet cells, respectively. Substrate feeding strategies were employed to alleviate substrate inhibition, providing a 14.8 % increase in yield. A biphasic catalytic system was explored to avoid product inhibition and thus further improve the 4-HPAA yield. Ethyl acetate was found to be the best organic solvent, and the optimum volume ratio of the organic phase to the aqueous phase was 40 % (v/v). Under the optimized conditions on a 1 L scale, a yield of 76.5 % was obtained with a substrate concentration of 120 mM. Thus, the bioconversion was more efficient in the ethyl acetate/buffer biphasic system than in the monophasic aqueous system, and the yield of 4-HPAA was improved 1.89-fold.  相似文献   

19.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide of thymopentin(TP-5), Z-Arg-Lys-NH2 in organic solvents was studied. Z-Arg-OMe was used as the acyl donor and Lys-NH2 was used as the nucleophile. An industrial alkaline protease alcalase and trypsin were used to catalyze the synthesis of the target dipeptide in water-organic cosolvent systems. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including organic solvents, water content, temperature, pH, and reaction time on the yield of Z-Arg-Lys-NH2. The optimum conditions using alcalase as the catalyst are pH 10.0, 35 degrees C, in acetonitrile/DMF/Na2CO3-NaHCO3 buffer system (80:10:10, V/V), 6 h, with the dipeptide yield of 71.1%. Compared with alcalase, the optimum conditions for trypsin are pH 8.0, 35 degrees C, in ethanol/Tris-HCl buffer system (80:20, V/V), 4 h, with the dipeptide yield of 76.1%.  相似文献   

20.
We report on the development of azide-coronatine as a useful platform for azide alkyne cycloaddition ("click chemistry")-mediated synthesis of molecular probes. (+)-Azido-coronatine was synthesized in 10 steps with 11% yield using improved synthesis of coronafacic acid, in which the highly exo-selective Diels-Alder reaction (endo:exo > 1:25) is the key step. Azido coronatine was as effective as the original coronatine in a stomatal opening assay, and was easily modified to a fluorescein isothiocyanate (FITC)-labeled probe with high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号