首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous missense mutations in BRCA1 and BRCA2 are detected during clinical screening of breast and ovarian cancer patients. Because of the lack of a functional protein assay to determine the functional consequence of these mutations, patients are often frustrated by inconclusive results due to unclassified variants (UV). To determine whether a reported UV is also present in a control collective and therefore more likely be a rare polymorphism than a deleterious mutation, we collected a control population consisting of 95 females and 25 males aged over 60 years (mean 73 years) without a family history of BRCA associated cancers. The age of the control group is beyond the median onset of breast and ovarian cancer with a hereditary background. These controls were analysed for the presence of 19 known UVs in BRCA1 with the DHPLC technique. Only four of the 19 variants (R496H, R866C, S1040N and M1652I) were detected and can be considered polymorphims. However, no firm conclusion can be drawn about the functional relevance of the other 15 variants.  相似文献   

2.
3.
4.
Levanat S  Musani V  Cvok ML  Susac I  Sabol M  Ozretic P  Car D  Eljuga D  Eljuga L  Eljuga D 《Gene》2012,498(2):169-176
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.  相似文献   

5.
INTRODUCTION: Hereditary breast cancer has been partly attributed to germline mutations in the BRCA1 gene that are deleterious for BRCA1 protein activity. This paper analyzes the incidence and characteristics of detectable BRCA1 mutations and polymorphisms in a hospital-based consecutive series of breast cancer patients from southern Italy to investigate the incidence and the association of these molecular alterations with breast cancer biology and family history. METHODS: One hundred cases with familial characteristics were selected from a consecutive series of 511 patients with a first diagnosis of breast cancer. DNA from peripheral blood was screened for whole BRCA1 gene mutations utilizing dHPLC as a pre-screening analysis and automatic DNA sequencing for the identification of specific alterations. RESULTS: In the overall series of 511 patients, 100 had a family history of breast cancer and were investigated for BRCA1 mutations. Two types of BRCA1 mutations were identified, 5382insC in six cases and 4566delA in one case. The 5382insC mutation was present in two out of six cases with ovarian cancer while 4566delA in one case of male cancer. The most frequent missense polymorphisms were E1038G, P871L, K1183R in exon 11, S1613G, M1652I in exon 16 and D1778G in exon 22. Confirming what found in previous studies, patients in whom pathological BRCA1 mutations were detected had early-onset breast cancer (p=0.05), positive nodal status (p=0.05), lower ER (p=0.02) and PgR (p=0.01) content. Interestingly, the K1183R polymorphism and, less strongly, S1613G polymorphism were associated to mutational risk (K1183R: OR 0.1 p=0.03; S1613G: OR 2.7 p=0.08). CONCLUSION: Mutations in the BRCA1 gene are frequent also in our consecutive series of patients from southern Italy. An association between two detected single nucleotide polymorphisms (SNPs) and BRCA1 mutational risk was ascertained. Finally, we confirm the fact that peculiar clinical-pathological features seem to characterize patients with a family history of breast cancer and BRCA1 alterations.  相似文献   

6.
Coquelle N  Green R  Glover JN 《Biochemistry》2011,50(21):4579-4589
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.  相似文献   

7.
The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases). 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS). BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82–94%), poor for BRCAX with an LCS (40–50%), and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71–100%). This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.  相似文献   

8.
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.  相似文献   

9.
Hereditary breast cancer constitutes 5–10% of all breast cancer cases. Inherited mutations in the BRCA1 and BRCA2 tumor-suppressor genes account for the majority of hereditary breast cancer cases. The BRCA1 C-terminal region (BRCT) has a functional duplicated globular domain, which helps with DNA damage repair and cell cycle checkpoint protein control. More than 100 distinct BRCA1 missense variants with structural and functional effects have been documented within the BRCT domain. Interpreting the results of mutation screening of tumor-suppressor genes that can have high-risk susceptibility mutations is increasingly important in clinical practice. This study includes a novel mutation, p.His1746 Pro (c.5237A>C), which was found in BRCA1 exon 20 of a breast cancer patient. In silico analysis suggests that this mutation could alter the stability and orientation of the BRCT domain and the differential binding of the BACH1 substrate.  相似文献   

10.
To define the prevalence and relative contributions of BRCA1 and BRCA2 mutations among African American families with breast cancer, we analyzed 28 DNA samples from patients identified through two oncology clinics. The entire coding regions of BRCA1 and BRCA2 were screened by protein truncation test, heteroduplex analysis, or single-stranded conformation polymorphism followed by DNA sequencing of variant bands. Deleterious protein-truncating BRCA1 and BRCA2 mutations were identified in five patients or 18% of the entire cohort. Only 8% (1 of 13) of women with a family history of breast cancer, but no ovarian cancer, had mutations. The mutation rates were higher for women from families with a history of breast cancer and at least one ovarian cancer (three of six, 50%). One woman with a family history of undocumented cancers was also found to carry a deleterious mutation in BRCA2. The spectrum of mutations was unique in that one novel BRCA1 mutation (1625del5) and three novel BRCA2 mutations (1536del4, 6696delTC, and 7795delCT) were identified. No recurrent mutations were identified in this cohort, although one BRCA2 (2816insA) mutation had been previously reported. In addition, two BRCA1 and four BRCA2 missense mutations of unknown significance were identified, one of which was novel. Taken together with our previous report on recurrent mutations seen in unrelated families, we conclude that African Americans have a unique mutation spectrum in BRCA1 and BRCA2 genes, but recurrent mutations are likely to be more widely dispersed and therefore not readily identifiable in this population.  相似文献   

11.
Hereditary breast cancer comprises 10% of all breast cancers. The most prevalent genes causing this pathology are BRCA1 and BRCA2 (breast cancer early onset 1 and 2), which also predispose to other cancers. Despite the outstanding relevance of genetic screening of BRCA deleterious variants in patients with a history of familial cancer, this practice is not common in Latin American public institutions. In this work we assessed mutations in the entire exonic and splice-site regions of BRCA in 39 patients with breast and ovarian cancer and with familial history of breast cancer or with clinical features suggestive for BRCA mutations by massive parallel pyrosequencing. First we evaluated the method with controls and found 41-485 reads per sequence in BRCA pathogenic mutations. Negative controls did not show deleterious variants, confirming the suitability of the approach. In patients diagnosed with cancer we found 4 novel deleterious mutations (c.2805_2808delAGAT and c.3124_3133delAGCAATATTA in BRCA1; c.2639_2640delTG and c.5114_5117delTAAA in BRCA2). The prevalence of BRCA mutations in these patients was 10.2%. Moreover, we discovered 16 variants with unknown clinical significance (11 in exons and 5 in introns); 4 were predicted as possibly pathogenic by in silico analyses, and 3 have not been described previously. This study illustrates how massive pyrosequencing technology can be applied to screen for BRCA mutations in the whole exonic and splice regions in patients with suspected BRCA-related cancers. This is the first effort to analyse the mutational status of BRCA genes on a Mexican-mestizo population by means of pyrosequencing.  相似文献   

12.
This study included 20 selected female patients with breast cancer, 30 of their female relatives (sisters and daughters), and 10 healthy females as a control group. Genomic DNA was extracted from peripheral blood lymphocytes of all the subjects, and the polymerase chain reaction was carried out using specific primers for BRCA1 (exons 2 and 8) and BRCA2 (exons 9, 11, and 21). The mutations were detected using a single-strand conformation polymorphism assay and heteroduplex analysis. Finally, the sample variants and their controls were sequenced. Mutations were detected in 44% of the study population, with 18% found in the BRCA1 gene and 26% attributed to BRCA2. Five sequence variants were identified, including two frameshift mutations, one nonsense mutation, and two missense mutations. Therefore, we conclude that germline mutations in two major genes, BRCA1 and BRCA2, may have an important influence on the predisposition and development of familial breast cancer.  相似文献   

13.
The objective of this study was to design and validate a next-generation sequencing assay (NGS) to detect BRCA1 and BRCA2 mutations. We developed an assay using random shearing of genomic DNA followed by RNA bait tile hybridization and NGS sequencing on both the Illumina MiSeq and Ion Personal Gene Machine (PGM). We determined that the MiSeq Reporter software supplied with the instrument could not detect deletions greater than 9 base pairs. Therefore, we developed an alternative alignment and variant calling software, Quest Sequencing Analysis Pipeline (QSAP), that was capable of detecting large deletions and insertions. In validation studies, we used DNA from 27 stem cell lines, all with known deleterious BRCA1 or BRCA2 mutations, and DNA from 67 consented control individuals who had a total of 352 benign variants. Both the MiSeq/QSAP combination and PGM/Torrent Suite combination had 100% sensitivity for the 379 known variants in the validation series. However, the PGM/Torrent Suite combination had a lower intra- and inter-assay precision of 96.2% and 96.7%, respectively when compared to the MiSeq/QSAP combination of 100% and 99.4%, respectively. All PGM/Torrent Suite inconsistencies were false-positive variant assignments. We began commercial testing using both platforms and in the first 521 clinical samples MiSeq/QSAP had 100% sensitivity for BRCA1/2 variants, including a 64-bp deletion and a 10-bp insertion not identified by PGM/Torrent Suite, which also suffered from a high false-positive rate. Neither the MiSeq nor PGM platform with their supplied alignment and variant calling software are appropriate for a clinical laboratory BRCA sequencing test. We have developed an NGS BRCA1/2 sequencing assay, MiSeq/QSAP, with 100% analytic sensitivity and specificity in the validation set consisting of 379 variants. The MiSeq/QSAP combination has sufficient performance for use in a clinical laboratory.  相似文献   

14.
15.
Familial clustering of colorectal cancer occurs in 15-20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer.  相似文献   

16.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   

17.
Mammary tumors are the most common tumor type in both human and canine females. Mutations in the breast cancer susceptibility gene, BRCA2, have been found in most cases of inherited human breast cancer. Similarly, the canine BRCA2 gene locus has been associated with mammary tumors in female dogs. However, deleterious mutations in canine BRCA2 have not been reported, thus far. The BRCA2 protein is involved in homologous recombination repair via its interaction with RAD51 recombinase, an interaction mediated by 8 BRC repeats. These repeats are 26-amino acid, conserved motifs in mammalian BRCA2. Previous structural analyses of cancer-associated mutations affecting the BRC repeats have shown that the weakening of RAD51''s affinity for even 1 repeat is sufficient to increase breast cancer susceptibility. In this study, we focused on 2 previously reported canine BRCA2 mutations (T1425P and K1435R) in BRC repeat 3 (BRC3), derived from mammary tumor samples. These mutations affected the interaction of canine BRC3 with RAD51, and were considered deleterious. Two BRC3 mutations (K1440R and K1440E), reported in human breast cancer patients, occur at amino acids corresponding to those of the K1435R mutation in dogs. These mutations affected the interaction of canine BRC3 with RAD51, and may also be considered deleterious. The two BRC3 mutations and a substitution (T1430P), corresponding to T1425P in canine BRCA2, were examined for their effects on human BRC3 function and the results were compared between species. The corresponding mutations and the substitution showed similar results in both human and canine BRC3. Therefore, canine BRCA2 may be a good model for studying human breast cancer caused by BRCA2 mutations.  相似文献   

18.
If the risk of disease is not the same for all germline mutations in a given gene, or if there are other familial modifiers of risk in carriers, then family-history-based estimates of average risk for detected mutations in that gene will depend on how carriers are sampled. Risk may also depend on the site or type of mutation. We studied 51 families with strong histories of breast cancer who attended Australian family cancer clinics and in which a germline mutation in BRCA1 or BRCA2 had been identified (28 and 23 families, respectively). Breast cancer risk in carriers was estimated under maximum likelihood theory, using information from all family members including those not tested, with adjustment for ascertainment by conditioning on genotype of the proband and family phenotype. The average cumulative risk of breast cancer for mutations in either BRCA1 or BRCA2 was 27% (95% confidence interval 16-43%) to age 50 and 64% (44-83%) to age 70. When grouped, the incidence in carriers was on average 17 (10-30) times that in non-carriers, independent of gene or mutation type (hazard ratios: 11 (4-29) for BRCA1, 23 (12-43) for BRCA2 (P for difference = 0.23); 13 (6-29) for protein-truncating mutations, 30 (9-104) for missense mutations and 30 (10-90) for splice-site mutations). For missense mutations, this was equivalent to a cumulative risk to age 70 of 83% (40-100%) and was due in part, but not totally, to the missense mutations 300 T>G in BRCA1 and 4486 G>T in BRCA2, which were individually found to be associated with high risk (P<0.001). Mutations in the central region of BRCA1 may be associated with a lower risk. The issue of the pathogenicity of specific variants may be addressed analytically providing there are one or more suitably informative families with that mutation.  相似文献   

19.
Women with mutations in the breast cancer genes BRCA1 or BRCA2 have an increased lifetime risk of developing breast, ovarian and other BRCA-associated cancers. However, the number of detected germline mutations in families with hereditary breast and ovarian cancer (HBOC) syndrome is lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA genes in some high-risk families are due to the presence of intragenic rearrangements such as deletions, duplications or insertions that span whole exons. This article reviews the molecular aspects of BRCA1 and BRCA2 rearrangements and their frequency among different populations. An overview of the techniques used to screen for large rearrangements in BRCA1 and BRCA2 is also presented. The detection of rearrangements in BRCA genes, especially BRCA1, offers a promising outlook for mutation screening in clinical practice, particularly in HBOC families that test negative for a germline mutation assessed by traditional methods.  相似文献   

20.
Many sequence variants in predisposition genes are of uncertain clinical significance, and classification of these variants into high- or low-risk categories is an important problem in clinical genetics. Classification of such variants can be performed by direct epidemiological observations, including cosegregation with disease in families and degree of family history of the disease, or by indirect measures, including amino acid conservation, severity of amino acid change, and evidence from functional assays. In this study, we have developed an approach to the synthesis of such evidence in a multifactorial likelihood-ratio model. We applied this model to the analysis of three unclassified variants in BRCA1 and three in BRCA2. The evidence strongly suggests that two variants (C1787S in BRCA1 and D2723H in BRCA2) are deleterious, three (R841W in BRCA1 and Y42C and P655R in BRCA2) are neutral, and one (R1699Q in BRCA1) remains of uncertain significance. These results provide a demonstration of the utility of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号