首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nitrogen fixation by cyanobacteria in a moss community on East Ongul Island (69°00'S 39°35'E), Antarctica was investigated using the acetylene reduction method. The mean acetylene reduction rate at 10°C and 200 μE·m−2·s−1 photosynthetically active radiation was 7.12 nmol C2H4 per square centimeter of moss community per hour. The effects of temperature, radiation, desiccation and rehydration on the acetylene reduction rates were examined. A simple predictive model was constructed in order to estimate the amount of nitrogen fixed in the field. Using this model, the daily amount of nitrogen fixation was calculated from microclimatic data (temperature and radiation) measured in the experimental field at Syowa Station on East Ongul Island between 1983 and 1984. The cumulative amount of nitrogen fixation in the growing season during this period was estimated to be 329 mg N per square meter of moss community. It is suggested that nitrogen fixation by cyanobacteria in the moss community is important as a nitrogen source for the community growth on East Ongul Island.  相似文献   

2.
Nubbins of the coral Acropora aspera were artificially bleached and nitrogen fixation (acetylene reduction) rates were measured on the developing epilithic communities. Seasonal comparisons were made between corals that died in summer of heat stress and corals that died in winter from natural cold stress. Rates of acetylene reduction from artificially bleached corals peaked at 26.66 nmol cm−2 h−1 2 weeks after summer mortality, while rates from natural winter mortality peaked at 18.07 nmol cm−2 h−1 12 days after coral death. Comparative rates of acetylene reduction taken from live corals and coral rubble ranged between 0.56 and 1.16 nmol cm−2 h−1, and 0.15 and 12.77 nmol cm−2 h−1, respectively. N2-fixation rates from dead corals were up to 30 times greater than those measured on live corals. The observed increase in N2-fixation from dead corals may increase the availability of nitrogen for use in trophic processes within the reef for an extended period following the initial mortality event. If the spatial scale over which coral mortality has occurred in past thermal bleaching events is considered the ramifications of such an increase may be substantial.  相似文献   

3.
The ability of the benthic cyanobacterium Lyngbya wollei to fix nitrogen was studied using field samples and axenic cultures. L. wollei was collected and isolated from Lake Okeechobee, Florida, where it forms extensive mats. Rates of acetylene reduction up to 39.1 nmol mg dry wt−1 h−1 were observed for field samples. The maximum observed rate of acetylene reduction in axenic laboratory cultures was 200 nmol mg dry wt−1 h−1. Aerobic conditions limited nitrogen fixation activity, but dark/light cycles promoted the development of activity. Reduced oxygen levels appeared to be required for the development of significant levels of nitrogenase activity. The level of irradiance also had a significant impact on the level of activity. The potential significance of nitrogen fixation to Lyngbya production is discussed.  相似文献   

4.
Nitrogenase activity (acetylene reduction activity) was found to occur universally in the Cyperus papyrus swamp in Lake Naivasha. Low rates of acetylene reduction activity (0.9–104.9 nmol C2H4 g d.wt. roots-1 h-1) were associated with excised roots of C. papyrus but higher rates of activity (89.0–280.4 nmol C2H4 g d.wt. roots-1 h-1) were associated with intact root systems of the plant. It was estimated that nitrogen fixation associated with young roots alone could supply about 26% of the nitrogen requirements of growing papyrus plants. Acetylene reduction activity in the lake bottom sediments was generally low and associated with adjacent papyrus stands. Plate counts of putative aerobic and facultatively anaerobic N2-fixing bacteria associated with papyrus roots showed the presence of high numbers of diazotrophs (5.4 × 106 CFU g d.wt. roots-1). Fewer numbers of N2-fixing bacteria were detected in the sediments (1.9 × 103-3.2 × 104 CFU g d.wt. sediment-1).  相似文献   

5.
Transformation of urea to ammonium is an important link in the nitrogen cycle in soil and water. Although microbial nitrogen transformations, such as nitrification and denitrification, are well studied in freshwater sediment and epiphytic biofilm in shallow waters, information about urea transformation in these environments is scarce. In this study, urea transformation of sedimentary, planktonic, and epiphytic microbial communities was quantified and urea transformation of epiphytic biofilms associated with three different common wetland macrophyte species is compared. The microbial communities were collected from a constructed wetland in October 2002 and urea transformation was quantified in the laboratory at in situ temperature (12°C) with the use of the 14C-urea tracer method, which measures the release of 14CO2 as a direct result of urease activity. It was found that the urea transformation was 100 times higher in sediment (12–22 mmol urea-N m−2 day−1) compared with the epiphytic activity on the surfaces of the submerged plant Elodea canadensis (0.1–0.2 mmol urea-N m−2 day−1). The epiphytic activity of leaves of Typha latifolia was lower (0.001–0.03 mmol urea-N m−2 day−1), while urea transformation was negligible in the water column and on the submerged leaves of the emergent plant Phragmites australis. However, because this wetland was dominated by dense beds of the submerged macrophyte E. canadensis, this plant provided a large surface area for epiphytic microbial activity—in the range of 23–33 m2 of plant surfaces per square meter of wetland. Thus, in the wetland system scale at the existing plant distribution and density, the submerged plant community had the potential to transform 2–7 mmol urea-N m−2 day−1 and was in the same magnitude as the urea transformation in the sediment.  相似文献   

6.
Porella navicularis, a common leafy liverwort in western North America, was found to possess numerous epiphytic Nostoc colonies. Although the abundance of colonies was variable, the association was found consistently throughout a broad geographic range. Unlike cyanobacteria in other hepatic assocations, the Nostoc occurred as distinct colonies harbored in crevices and curled margins of leaves. Heterocyst frequency was 3–7%. Acetylene reduction activity was present in 85% of samples examined, with an average value of 53.5 nmol C2H4∙g dry wt-1∙hr-1 and a maximum of 316 nmol C2H4∙g dry wt-1∙hr-1. This suggests that bryophyte nitrogen-fixing associations may be more important than previously realized.  相似文献   

7.
A. L. Huber 《Hydrobiologia》1986,131(3):193-203
Variations in nitrogen fixation (acetylene reduction) by Nodularia spumigena blooms in the Peel-Harvey estuarine system were examined with respect to spatial (sampling station location, and depth) and temporal (seasonal and diurnal) distribution. The annual contributions of nitrogen fixation by the blooms to the nitrogen budget of the estuary were estimated to range from 309 to 713t. Contributions by nitrogen fixation were similar to the riverine inputs in the Harvey Estuary, but lower in the Peel Inlet.The Harvey Estuary had higher biomass and total fixation rates (to 0.4 nmol C2H2 · ml–1 h–1), but the heterocyst nitrogen fixation rates were greater in the Peel Inlet (to 9 × 10–1 nmol C2H2 · heterocyst–1 · h–1). Nitrogen fixation decreased with depth in response to light, though other factors also appeared to be involved. The rates of fixation decreased concurrently with increasing bloom age, total soluble inorganic nitrogen and salinities. Maximum daily fixation rates occurred in the early morning.  相似文献   

8.
We have capitalised on the availability of eggs and adults of the naked dragonfish Gymnodraco acuticeps (Sub-order Notothenioidei, F. Bathydraconidae) near McMurdo Station, Antarctica to examine metabolic energy utilization at different stages of its life cycle. Average egg respiration rates were found to increase from 2.17±1.02 nmol O2 h−1 ind−1 at about 17 h post-fertilization (hpf) to 5.72±0.56 nmol h−1 ind−1 at about 24 hpf, during which time the eggs underwent first cleavage. The respiration rates of embryos from 2–20 days post-fertilization (dpf) averaged 4.11±1.47 nmol O2 h−1 ind−1. About 10 months post-fertilization, oxygen consumption rates of 27.14±3.92 nmol O2 h−1 ind−1 were recorded immediately prior to hatching, with a peak of 112.41±31.38 nmol O2 h−1 ind−1 at the time of hatch. Larvae aged 46–63 days post-hatch had an average respiration rate of 64.4±15.11 nmol O2 h−1 ind−1. Mass-specific respiration rates of hatched larvae (approximately 1–2 months old) were calculated using dry weights (DW) and averaged 16.1±3.4 nmol O2 h−1 mg−1 DW. Adult dragonfish respiration rates (corrected for a 100 g fish and using a 0.8 scaling exponent) averaged 0.91±0.36 mmol O2 kg−1 h−1 after a 48 h acclimatization period, which is not indicative of significant metabolic cold adaptation. The energy contents of dragonfish eggs and larvae were also measured by microbomb calorimetry and used, along with the respiration data, in an initial approach to estimate an energy budget. In order to balance the budget, the bulk of the available post-gastrulation respiratory energy (during 213 days of embryonic incubation) must be consumed at a relatively low average rate (7.1 nmol O2 h−1 ind−1), which supports the possibility that advanced dragonfish embryos overwinter in a relatively quiescent metabolic state while awaiting a suitable stimulus (such as the return of the sun) to initiate hatching.  相似文献   

9.
The aim of the present work was to estimate the contribution of different point and diffuse sources to the regional N2O emission strength of steppe in the Xilin river catchment, Inner Mongolia, People’s Republic of China. Transect studies showed that the topographic effect on N2O emissions from upland soils was negligible and that upland steppe is only a very weak net source of N2O during the growing season (0.8 ± 0.4 μg N2O–N m−2 h−1). Slightly higher emissions were found for riparian areas (1.8 ± 0.3 μg N2O–N m−2 h−1), which cover ∼4% of the landscape. Even faeces or urine additions stimulated N2O emissions from steppe soils only weakly (<2.5 μg N2O–N m−2 h−1 for a 5 days period). Due to low moisture contents, N2O emissions from dung heaps were also rather low (6.2 ± 0.8 μg N2O–N kg−1 dry matter h−1). In contrast, three orders of magnitude higher N2O emissions were found at sheepfolds (2.45 mg N2O–N m−2 h−1 on average). By calculating N2O emissions on a landscape scale, we show that point sources, and especially sheepfolds, become the dominating regional N2O source during the growing season if stocking rates are >1 sheep ha−1. Our results indicate that the common grazing management in the Xilin river region leads to a translocation of nitrogen from large source areas towards defined spots. This finding is further supported by measurements of NH3 concentrations at different sites. Since most of the nitrogen accumulated in these hot spots is finally lost through burning of the dried excrements by the farmers for heating and cooking purposes, the ecosystem faces a significant human perturbation of regional N cycling, which may contribute to an accelerated degradation of steppe in the Xilin river region. Responsible Editor: Per Ambus.  相似文献   

10.
Dinitrogen-fixing organisms in cyanobacterial mats were studied in two shallow coral reef ecosystems: La Reunion Island, southwestern Indian Ocean, Sesoko (Okinawa) Island, and northwestern Pacific Ocean. Rapidly expanding benthic miniblooms, frequently dominated by a single cyanobacterial taxon, were identified by microscopy and molecular tools. In addition, nitrogenase activity by these blooms was measured in situ. Dinitrogen fixation and its contribution to mat primary production were calculated using 15N2 and 13C methods. Dinitrogen-fixing cyanobacteria from mats in La Reunion and Sesoko showed few differences in taxonomic composition. Anabaena sp. among heterocystous and Hydrocoleum majus and Symploca hydnoides among nonheterocystous cyanobacteria occurred in microbial mats of both sites. Oscillatoria bonnemaisonii and Leptolyngbya spp. occurred only in La Reunion, whereas Hydrocoleum coccineum dominated in Sesoko. Other mats dominated by Hydrocoleum lyngbyaceum, Phormidium laysanense, and Trichocoleus tenerrimus occurred at lower frequencies. The 24-h nitrogenase activity, as measured by acetylene reduction, varied between 11 and 324 nmoles C2H2 reduced μg−1 Chl a. The highest values were achieved by heterocystous Anabaena sp. performed mostly during the day. Highest values for nonheterocystous cyanobacteria were achieved by H. coccineum mostly during the night. Daily nitrogen fixation varied from nine (Leptolyngbya) to 238 nmoles N2 μg−1 Chl day−1 (H. coccineum). Primary production rates ranged from 1,321 (S. hydnoides) to 9,933 nmoles C μg−1 Chl day−1 (H. coccineum). Dinitrogen fixation satisfied between 5% and 21% of the nitrogen required for primary production.  相似文献   

11.
Many types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO4 2−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries. Received 26 April 2002; Accepted 12 July 2002.  相似文献   

12.
Elke Freiberg 《Oecologia》1998,117(1-2):9-18
The acetylene reduction method was used to measure nitrogen fixation in the phyllosphere of attached leaves of different phorophytes under natural conditions in a premontane rain forest in Costa Rica. Maximum rates of nitrogen fixation (26 ng N · cm−2 leaf area · h−1) – mainly due to the activity of two species of Scytonema (Cyanobacteria) – were measured in the rainy season in bright sunlight. Rates of nitrogen fixation were correlated with the leaf area covered by Scytonema. In periods without precipitation the fixation activity decreased to zero within 2–3 days. As long as the epiphylls were sufficiently supplied with water, other microclimatic factors like temperature and light intensity also influenced nitrogen fixation rates, but to a lesser extent. Relative humidity and species of phorophyte showed no direct influence. It was concluded that the most important factor for nitrogen fixation in the phyllosphere was the availability of liquid water. Linking these results to meteorological data, the input of nitrogen by biological nitrogen fixation in the phyllosphere in the investigation area was estimated to be as much as 1.6 ± 0.8 kg N · ha−1 · year−1 per unit of leaf area index (LAI). For an LAI of 2 for the understory the nitrogen input would vary between 2 and 5 kg N · ha−1 · year−1. This work also demonstrates the importance of detailed knowledge of variation in microclimate throughout the year as a basis for extrapolation of the annual nitrogen input. Received: 21 December 1997 / Accepted: 14 June 1998  相似文献   

13.
Grazing and Ecosystem Carbon Storage in the North American Great Plains   总被引:3,自引:0,他引:3  
Isotopic signatures of 13C were used to quantify the relative contributions of C3 and C4 plants to whole-ecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid- and tallgrass communities) along an east–west environmental gradient in the North American Great Plains. Functional group composition of plant communities, the source and magnitude of carbon inputs, and total ecosystem carbon storage displayed inconsistent responses to long-term livestock grazing along this gradient. C4 plants [primarily Bouteloua gracilis (H.B.K.) Lag ex Steud.] dominated the long-term grazed site in the shortgrass community, whereas the ungrazed site was co-dominated by C3 and C4 species; functional group composition did not differ between grazed and ungrazed sites in the mid- and tallgrass communities. Above-ground biomass was lower, but the relative proportion of fine root biomass was greater, in grazed compared to ungrazed sites at all three locations. The grazed site of the shortgrass community had 24% more whole-ecosystem carbon storage compared to the ungrazed site (4022 vs. 3236 g C m−2). In contrast, grazed sites at the mid- and tallgrass communities had slightly lower (8%) whole-ecosystem carbon storage compared to ungrazed sites (midgrass: 7970 vs. 8683 g C m−2; tallgrass: 8273 vs. 8997 g C m−2). Differential responses between the shortgrass and the mid- and tallgrass communities with respect to grazing and whole-ecosystem carbon storage are likely a result of: (1) maintenance of larger soil organic carbon (SOC) pools in the mid- and tallgrass communities (7476–8280 g C m−2) than the shortgrass community (2517–3307 g C m−2) that could potentially buffer ecosystem carbon fluxes, (2) lower root carbon/soil carbon ratios in the mid- and tallgrass communities (0.06–0.10) compared to the shortgrass community (0.20–0.27) suggesting that variation in root organic matter inputs would have relatively smaller effects on the size of the SOC pool, and (3) the absence of grazing-induced variation in the relative proportion of C3 and C4 functional groups in the mid- and tallgrass communities. We hypothesize that the magnitude and proportion of fine root mass within the upper soil profile is a principal driver mediating the effect of community composition on the biogeochemistry of these grassland ecosystems.  相似文献   

14.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

15.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

16.
Wetlands are often highly effective nitrogen (N) sinks. In the Lake Waco Wetland (LWW), near Waco, Texas, USA, nitrate (NO3) concentrations are reduced by more than 90% in the first 500 m downstream of the inflow, creating a distinct gradient in NO3 concentration along the flow path of water. The relative importance of sediment denitrification (DNF), dissimilatory NO3 reduction to ammonium (DNRA), and N2 fixation were examined along the NO3 concentration gradient in the LWW. “Potential DNF” (hereafter potDNF) was observed in all months and ranged from 54 to 278 μmol N m−2 h−1. “Potential DNRA” (hereafter potDNRA) was observed only in summer months and ranged from 1.3 to 33 μmol N m−2 h−1. Net N2 flux ranged from 184 (net denitrification) to −270 (net N2 fixation) μmol N m−2 h−1. Nitrogen fixation was variable, ranging from 0 to 426 μmol N m−2 h−1, but high rates ranked among the highest reported for aquatic sediments. On average, summer potDNRA comprised only 5% (±2% SE) of total NO3 loss through dissimilatory pathways, but was as high as 36% at one site where potDNF was consistently low. Potential DNRA was higher in sediments with higher sediment oxygen demand (r 2 = 0.84), and was related to NO3 concentration in overlying water in one summer (r 2 = 0.81). Sediments were a NO3 sink and accounted for 50% of wetland NO3 removal (r 2 = 0.90). Sediments were an NH4+ source, but the wetland was often a net NH4+ sink. Although DNRA rates in freshwater wetlands may rival those observed in estuarine systems, the importance of DNRA in freshwater sediments appears to be minor relative to DNF. Furthermore, sediment N2 fixation can be extremely high when NO3 in overlying water is consistently low. The data suggest that newly fixed N can support sustained N transformation processes such as DNF and DNRA when surface water inorganic N supply rates are low.  相似文献   

17.
A function of cyanobacterial mats in phosphorus-limited tropical wetlands   总被引:8,自引:2,他引:6  
Cyanobacterial mats are important components of oligotrophic wetland ecosystems in the limestone-based regions of the Caribbean. Our goals were to: (1) Estimate the biomass and primary production of cyanobacterial mats, quantify the extent of nitrogen fixation and measure the activity of alkaline phosphatase (APA) in representative marshes of northern Belize; (2) Record changes in these variables following nutrient additions. The mat biomass ranged from 200 to 700 g m–2 AFDM, with the epipelon contributing up to 87% of the total. Tissue nitrogen was similar in all marshes (1.1–1.5%), while tissue phosphorus was extremely low (0.0055–0.0129%) and well correlated with the N:P ratio in water. Nitrogen fixation expressed as nitrogenase activity was high in some marshes (17.5 nmol C2H4 cm–2 h–1) and low (< 5 nmol C2H4 cm–2 h–1) in others depending mainly on the proportion of heterocyst-forming cyanobacteria (Nostocales, Stigonematales) in the mat. Alkaline phosphatase activity was positively correlated with the N:P ratio of the mat. Experimental addition of phosphorus resulted in significant increase in primary production and nitrogen fixation while it suppressed the APA activity. The presented data clearly showed that oligotrophic marshes of northern Belize are strongly P limited. Increased input of phosphorus would profoundly change their structure and functions.  相似文献   

18.
An investigation into the changing phytoplankton biomass and total water column production during autumn sea ice formation in the eastern Weddell Sea, Antarctica showed reduced biomass concentrations and extremely low daily primary production. Mean chlorophyll-a concentration for the entire study period was extremely low, 0.15±0.01 mg.m−3 with a maximum of 0.35 mg.m−3 found along the first transect to the east of the grid. Areas of low biomass were identified as those either associated with heavy grazing or with deep mixing and corresponding low light levels. In most cases phytoplankton in the <20-μm size classes dominated. Integrated biomass to 100 m ranged from 7.1 to 28.0 mg.m−2 and correlated positively with surface chlorophyll-a concentrations. Mean PBmax (photosynthetic capacity) and αB (initial slope of the photosynthesis-irradiance curve) were 1.25±0.19 mgC. mgChla −1.h−1 and 0.042±0.009 mgC.mgChla −1.h−1.(μmol.m−2.s−1)−1 respectively. The mean index of photoadaptation,I k, was 32.2±4.0 μmol.m−2.s−1 and photoinhibition was found in all cases. Primary production was integrated to the critical depth (Z cr) at each production station and ranged from 15.6 to 41.5 mgC.m−2.d−1. It appears that, other than grazing intensity, the relationship between the critical depth and the mixing depth (Z mix) is an important factor as, ultimately, light availability due both to the late season and growing sea ice cover severely limits production during the austral autumn.  相似文献   

19.
Anaerobic tetrachloroethene(C2Cl4)-dechlorinating bacteria were enriched in slurries from chloroethene-contaminated soil. With methanol as electron donor, C2Cl4 and trichloroethene (C2HCl3) were reductively dechlorinated to cis-1,2-dichloroethene (cis-C2H2Cl2), whereas, with l-lactate or formate, complete dechlorination of C2Cl4 via C2HCl3, cis-C2H2Cl2 and chloroethene (C2H3Cl) to ethene was obtained. In oxic soil slurries with methane as a substrate, complete co-metabolic degradation of cis-C2H2Cl2 was obtained, whereas C2HCl3 was partially degraded. With toluene or phenol both of the above were readily co-metabolized. Complete degradation of C2Cl4 was obtained in sequentially coupled anoxic and oxic chemostats, which were inoculated with the slurry enrichments. Apparent steady states were obtained at various dilution rates (0.02–0.4 h−1) and influent C2Cl4-concentrations (100–1000 μM). In anoxic chemostats with a mixture␣of␣formate and glucose as the carbon and electron source, C2Cl4 was transformed at high rates (above␣140 μmol l−1 h−1, corresponding to 145 nmol Cl min−1 mg protein−1) into cis-C2H2Cl2 and C2H3Cl. Reductive dechlorination was not affected by addition of 5 mM sulphate, but strongly inhibited after addition of 5 mM nitrate. Our results (high specific dechlorination rates and loss of dechlorination capacity in the absence of C2Cl4) suggest that C2Cl4-dechlorination in the anoxic chemostat was catalysed by specialized dechlorinating bacteria. The partially dechlorinated intermediates, cis-C2H2Cl2 and C2H3Cl, were further degraded by aerobic phenol-metabolizing bacteria. The maximum capacity for chloroethene (the sum of tri-, di- and monochloro derivatives removed) degradation in the oxic chemostat was 95 μmol l−1 h−1 (20 nmol min−1 mg protein−1), and that of the combined anoxic → oxic reactor system was 43.4 μmol l−1 h−1. This is significantly higher than reported thus far. Received: 17 April 1997 / Received revision: 6 June 1997 / Accepted: 7 June 1997  相似文献   

20.
High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze–thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO3 and NH4 +) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from −12 to 27°C and when sub-zero, soil cooling rates reached 1.8°C h−1 (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号