首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Gastric cancer is a major cause of mortality worldwide. The glutamate/aspartate transporter SLC1A3 has been implicated in tumour metabolism and progression, but the roles of SLC1A3 in gastric cancer remain unclear. We used bioinformatics approaches to analyse the expression of SLC1A3 and its role in gastric cancer. The expression levels of SLC1A3 were examined using RT‐qPCR and Western bolting. SLC1A3 overexpressing and knock‐down cell lines were constructed, and the cell viability was evaluated. Glucose consumption, lactate excretion and ATP levels were determined. The roles of SLC1A3 in tumour growth were evaluated using a xenograft tumour growth model. SLC1A3 was found to be overexpressed in gastric cancer, and this overexpression was associated with poor prognosis. In vitro and in vivo assays showed that SLC1A3 affected glucose metabolism and promoted gastric cancer growth. GSEA analysis suggested that SLC1A3 was positively associated with the up‐regulation of the PI3K/AKT pathway. SLC1A3 overexpression activated the PI3K/AKT pathway and up‐regulated GLUT1, HK II and LDHA expression. The PI3K/AKT inhibitor LY294002 prevented SLC1A3‐induced glucose metabolism and cell proliferation. Our findings indicate that SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. SLC1A3 is therefore a potential therapeutic target in gastric cancer.  相似文献   

4.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

5.
Endometrial cancer is a common gynaecological malignant tumour among women across the world. Circular RNAs (circRNAs) are a novel kind of non‐coding RNAs, and they can play a crucial role in multiple cancers. Nevertheless, the mechanisms of circRNAs in regulating gene expression in endometrial cancer are still unclear. Here, our work sought to focus on the role that circ_0067835 exert in progression and development of endometrial cancer cells. We observed circ_0067835 was markedly elevated in endometrial cancer. Then, changes in endometrial cancer cell (RL95‐2 and HEC‐1B) function were determined after circ_0067835 knockdown. Loss‐of‐functional assays revealed that circ_0067835 down‐regulation significantly repressed RL95‐1 and HEC‐1B cell proliferation, migration and invasion. Bioinformatics analysis, luciferase reporter experiment and RNA pull‐down assay were employed to predict and validate circ_0067835 can bind to miR‐324‐5p. Increase in miR‐324‐5p remarkably depressed the proliferation, migration and invasion of endometrial cancer cells via inhibiting high mobility group A1 (HMGA1). HMGA1 is identified as a vital prognostic biomarker in endometrial cancer. Currently, we reported circ_0067835 was positively correlated with HMGA1 in endometrial cancer. We implied that circ_0067835 was capable of sponging miR‐324‐5p and inducing its downstream target HMGA1 in vitro and in vivo. In conclusion, circ_0067835 can compete with miR‐324‐5p, resulting in HMGA1 up‐regulation, and therefore induce the development of endometrial cancer.  相似文献   

6.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

7.
ObjectivesZFP91, an E3 ligase, has been reported to possess cancer‐promoting functions. This study aimed to elucidate the exact role of ZFP91 in tumour progression of pancreatic cancer and underlying mechanisms.Materials and MethodsWe analysed the correlation between ZFP91 expression and pancreatic cancer through TCGA and GEO data sets. Growth curve, colony formation, wound healing and transwell invasion assays were conducted to evaluate proliferation, migration and invasion of lentivirus transfected pancreatic cancer cells. GSEA and Western blot analysis were performed to validate the regulatory effect of ZFP91 on β‐catenin. Drug response curve and orthotopic implantation model reflected the sensitivity of chemotherapies.ResultsZFP91 overexpression is prevalent in pancreatic cancer and negatively correlated with overall survival. ZFP91 knock‐down attenuated proliferation, migration and invasion of pancreatic cancer cells. β‐catenin was a downstream gene of ZFP91, and its agonist could reverse the phenotype. ZFP91 promoted EMT and chemoresistance in pancreatic cancer.ConclusionsWe demonstrated that ZFP91 promoted pancreatic cancer proliferation, migration and invasion through activating β‐catenin signalling. EMT and chemoresistance were also regulated by ZFP91. ZFP91 might be a potential therapeutic target for pancreatic cancer.  相似文献   

8.
Pancreatic cancer is one of the most lethal gastrointestinal tumours, the most common pathological type is pancreatic adenocarcinoma (PAAD). In recent year, immune imbalanced in tumour microenvironment has been shown to play an important role in the evolution of tumours progression, and the efficacy of immunotherapy has been gradually demonstrated in clinical practice. In this study, we propose to construct an immune‐related prognostic risk model based on immune‐related genes MMP14 and INHBA expression that can assess the prognosis of pancreatic cancer patients and identify potential therapeutic targets for pancreatic cancer, to provide new ideas for the treatment of pancreatic cancer. We also investigate the correlation between macrophage infiltration and MMP14 and INHBA expression. First, the gene expression data of pancreatic cancer and normal pancreatic tissue were obtained from The Cancer Genome Atlas Program (TCGA) and The Genotype‐Tissue Expression public database (GTEx). The differentially expressed immune‐related genes between pancreatic cancer samples and normal sample were screened by R software. Secondly, univariate Cox regression analysis were used to evaluate the relationship between immune‐related genes and the prognosis of pancreatic cancer patients. A polygenic risk score model was constructed by Cox regression analysis. The prognostic nomogram was constructed, and its performance was evaluated comprehensively by internal calibration curve and C‐index. Using the risk model, each patient gets a risk score, and was divided into high‐ or low‐ risk groups. The proportion of 22 types of immune cells infiltration in pancreatic cancer samples was inferred by CIBERSOFT algorithm, correlation analysis (Pearson method) was used to analyse the correlation between the immune‐related genes and immunes cells. Then, we applied macrophage conditioned medium to culture pancreatic cancer cell line PANC1, detected the expression of MMP14 and INHBA by qRT‐PCR and Western blot methods. Knock‐down MMP14 and INHBA in PANC1 cells by transfected with shRNA lentiviruses. Detection of migration ability of pancreatic cells was done by trans‐well cell migration assay. A subcutaneous xenograft tumour model of human pancreatic cancer in nude mice was constructed. In conclusion, an immune‐related gene prognostic model was constructed, patients with high‐risk scores have poorer survival status, M2‐phenotype tumour‐associated macrophages (TAMs) up‐regulate two immune‐related genes, MMP14 and INHBA, which were used to establish the prognostic model. Knock‐down of MMP14 and INHBA inhibited invasion of pancreatic cancer.  相似文献   

9.
Papillary thyroid cancer (PTC) is a common endocrine system malignancy all over the world. Aberrant expression of six transmembrane epithelial antigen of the prostate 2 (STEAP2) has been functionally associated with cancer progression in many cancers. Nevertheless, its biological function in PTC is still unclear. Here, we found that PTC tissues had preferentially downregulated STEAP2 as compared with noncancerous tissues. Low STEAP2 expression correlated with aggressive clinicopathological characteristics and dismal prognosis in patients with PTC. We performed gain- and loss-of-function experiments, including cell proliferation assay (Cell Counting Kit-8 assay), EdU (5-ethynyl-2′-deoxyuridine) and colony formation assays, transwell migration, and invasion assays, and constructed a nude mouse xenograft tumor model. The results demonstrated that STEAP2 overexpression inhibited PTC cell proliferation, migration, and invasion in vitro and inhibited lung metastasis and tumorigenicity in vivo. Conversely, silencing STEAP2 yielded the opposite results in vitro. Mechanistically, bioinformatics analysis combined with validation experiments identified STEAP2 as the downstream target of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine (m6A) modification. METTL3 stabilized STEAP2 mRNA and regulated STEAP2 expression positively in an m6A-dependent manner. We also showed that m6A-mediated STEAP2 mRNA translation initiation relied on a pathway dependent on the m6A reader protein YTHDF1. Rescue experiments revealed that silencing STEAP2 partially rescued the tumor-suppressive phenotype induced by METTL3 overexpression. Lastly, we verified that the METTL3–STEAP2 axis functions as an inhibitor in PTC by suppressing epithelial–mesenchymal transition and the Hedgehog signaling pathway. Taken together, these findings strongly suggest that METTL3-mediated STEAP2 m6A modification plays a critical tumor-suppressive role in PTC progression. The METTL3–STEAP2 axis may be a potential therapeutic molecular target against PTC.Subject terms: Metastasis, Prognostic markers  相似文献   

10.
Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy in Taiwan. Therefore, refining the diagnostic sensitivity of biomarkers for early‐stage tumours and identifying therapeutic targets are critical for improving the survival rate of HNSCC patients. Metabolic reprogramming contributes to cancer development and progression. Metabolic pathways, specifically, play a crucial role in these diverse biological and pathological processes, which include cell proliferation, differentiation, apoptosis and carcinogenesis. Here, we investigated the role and potential prognostic value of the ubiquitin‐conjugating enzyme E2 (UBE2) family in HNSCC. Gene expression database analysis followed by tumour comparison with non‐tumour tissue showed that UBE2C was upregulated in tumours and was associated with lymph node metastasis in HNSCC patients. Knockdown of UBE2C significantly reduced the invasion/migration abilities of SAS and CAL27 cells. UBE2C modulates glycolysis pathway activation and HIF‐1α expression in SAS and CAL27 cells. CoCl2 (HIF‐1α inducer) treatment restored the expression of glycolytic enzymes and the migration/invasion abilities of UBE2C knockdown cells. Based on our findings, UBE2C expression mediates HIF‐1α activation, increasing glycolysis pathway activation and the invasion/migration abilities of cancer cells. UBE2C may be an independent prognostic factor and a therapeutic target in HNSCC.  相似文献   

11.
Mesenchymal stroma/stem‐like cells (MSCs) have antitumour activity, and MSC‐derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC‐derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA‐GARP in MSC cells. Exosomes were isolated from MSC and siGARP‐MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP‐MSC exosomes compared with that of MSC exosomes. We found that siGARP‐MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK‐8, colony formation, wound‐healing and Transwell invasion assays. Furthermore, siGARP‐MSC exosomes impeded IL‐6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT‐qPCR. In conclusion, MSC‐derived exosomes targeting GARP are a potential strategy for cancer therapy.  相似文献   

12.
13.
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.  相似文献   

14.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

15.
The decreased expression of tumour suppressor candidate 3 (TUSC3) is associated with proliferation in several types of cancer, leading to an unfavourable prognosis. The present study aimed to assess the cellular and molecular function of TUSC3 in patients with cervical squamous cell carcinoma (CSCC). Levels of mRNA expressions of TUSC3 were analysed in CSCC tissues and six cell lines using qRT‐PCR. Immunohistochemistry(IHC) was used to evaluate the protein expression level of TUSC3 in four paired specimens, 220 paraffin‐embedded CSCC specimens and 60 cases of normal cervical tissues(NCTs), respectively. Short hairpin RNA interference was employed for TUSC3 knockdown. Cell proliferation, migration and invasion were evaluated using growth curve, MTT assay, wound healing, transwell assay and xenograft tumour model, respectively. The results demonstrated that TUSC3 mRNA and protein expression levels were downregulated in CSCC samples. Multivariate and univariate analyses indicated that TUSC3 was an independent prognostic factor for patients with CSCC. Decreased TUSC3 expression levels were significantly associated with proliferation and an aggressive phenotype of cervical cancer cells both in vitro and in vivo. Moreover, the knockdown of TUSC3 promoted migration and invasion of cancer cells, while the increased expression of TUSC3 exhibited the opposite effects. The downregulation of TUSC3 facilitated proliferation and invasion of CSCC cells through the activation of the AKT signalling pathway. Our data demonstrated that the downregulation of TUSC3 promoted CSCC cell metastasis via the AKT signalling pathway. Therefore, TUSC3 may serve as a novel prognostic marker and potential target for CSCC.  相似文献   

16.
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.  相似文献   

17.
A disintegrin and metalloproteinase 17 (ADAM17) is highly expressed in various tumours and affects tumour progression. In this study, ADAM17 expression in 60 gastric cancer and 20 normal gastric mucosal tissues was assessed using immunohistochemistry. ADAM17 expression was higher in gastric cancer tissues than in normal gastric mucosal tissues (P < 0.0005). A significant relationship was identified between ADAM17 expression and the depth of tumour invasion, metastasis, and carcinoma stage. Furthermore, the effects of ADAM17 knockdown on the proliferation, cell invasion, and apoptosis of human gastric carcinoma cells (SGC-7901) were determined. SGC-7901 cells were transfected with ADAM17-shRNA, and cell proliferation and migration were assessed using CCK-8 and transwell assays, respectively, to evaluate the role of ADAM17 in tumour proliferation and invasion. Furthermore, the EGFR signalling pathway, the cell membrane receptor-bound TNF-α level, and apoptosis were evaluated by western blotting and flow cytometry. The inhibition of cell proliferation and invasion was observed in the ADAM17 knockdown cells, which was associated with modulation of the EGFR signalling pathway. Apoptosis was increased, and TNF-α signalling was attenuated in the ADAM17 knockdown cells. Our study demonstrated that ADAM17 over-expression in gastric cancer tissues was closely associated with tumour proliferation, invasion, and apoptosis.  相似文献   

18.
The aim of this study was to explore the role of sulfasalazine on proliferation and metastasis in gastric cancer by inhibition of xCT. The relationships between clinical characteristics and xCT expression were analysed. An immunohistochemical staining assay and Western blot were performed among gastric cancers and normal gastric tissues. qPCR and Western blot were also used to evaluate the mRNA and protein expression in the normal gastric cell and eight gastric cancer cells, respectively. CCK-8 and colony formation assays were used to evaluate the effect of sulfasalazine on the proliferation and colony formation ability of three gastric cancers. The effect of sulfasalazine on the migration and invasion abilities of three cancer cells was assessed by the Transwell assay. xCT protein is up-regulated in gastric cancer specimens and cells. Three gastric cancer cells with high, medium and low expression of xCT were selected for the following analyses. CCK-8 assays revealed that sulfasalazine could attenuate the proliferation of HGC-27 and AGS. Also, the colony formation assay revealed that sulfasalazine might attenuate the colony formation ability in HGC-27 and AGS cells. Plus, the Transwell assays demonstrated that sulfasalazine might attenuate the migration and invasion abilities in HGC-27 and AGS cells. In conclusion, higher expression of xCT is associated with advanced tumour stage and poor overall survival of gastric cancer. Sulfasalazine can attenuate the proliferation, colony formation, metastasis and invasion of gastric cancer in vitro. Further study is required to validate our findings.  相似文献   

19.
BackgroundThe tumour microenvironment primarily constitutes macrophages in the form of an immunosuppressive M2 phenotype, which promotes tumour growth. Thus, the development of methodologies to rewire M2‐like tumour‐associated macrophages (TAMs) into the M1 phenotype, which inhibits tumour growth, might be a critical advancement in cancer immunotherapy research.MethodsThe expressions of IL‐33 and indicators related to macrophage polarization in oesophageal squamous cell carcinoma (ESCC) tissues and peripheral blood mononuclear cell (PBMC)–derived macrophages were determined. Inhibition of ornithine decarboxylase (ODC) with small interfering RNA was used to analyse the phenotype of macrophage polarization and polyamine secretory signals. CCK‐8, wound‐healing and Transwell assays were used to detect the proliferation and migration of ECA109 cells in vitro. The tumour xenograft assay in nude mice was used to examine the role of IL‐33 in ESCC development in vivo.ResultsThis study showed the substantially elevated IL‐33 expression in ESCC tissues compared with the normal tissues. Additionally, enhanced infiltration of M2‐like macrophages into the ESCC tumour tissue was also observed. We observed a strong correlation between the IL‐33 levels and the infiltration of M2‐like macrophages in ESCC tumours locally. Mechanistically, IL‐33 induces M2‐like macrophage polarization by activating ODC, a key enzyme that catalyses the synthesis of polyamines. Inhibition of ODC suppressed M2‐like macrophage polarization. Finally, in vivo, we confirmed that IL‐33 promotes tumour progression.ConclusionsThis study revealed an oncogenic role of IL‐33 by actively inducing M2‐like macrophage differentiation; thus, contributing to the formation of an immunosuppressive ESCC tumour microenvironment. Thus, IL‐33 could act as a novel target for cancer immunotherapies.  相似文献   

20.
Gastric cancer ranks fourth for mortality globally among various malignant tumours, and invasion and metastasis are the major reason leading to its poor prognosis. Recently, accumulating studies revealed the role of reticulon proteins in cell growth and transmigration. However, the expression and biological function of reticulon proteins in human gastric cancer remain largely unclear. Herein, we explored the potential role of reticulon 2 (RTN2) in the progression of gastric cancer. Tissue microarray was used to determine the expression levels of RTN2 in 267 gastric cancer patients by immunohistochemistry. Gastric cancer cell lines were utilised to examine the influences of RTN2 on cellular migration and invasion abilities, epithelial-to-mesenchymal transition (EMT) and signalling pathway. In vivo studies were also performed to detect the effect of RTN2 on tumour metastasis. We found that RTN2 expression was notably upregulated in tumour tissues compared to pericarcinomatous tissues. High RTN2 expression was positively correlated with patients’ age, vessel invasion, tumour invasion depth, lymph node metastasis and TNM stage. Besides, high RTN2 staining intensity was associated with adverse survival which was further identified as an independent prognostic factor for gastric cancer patients by multivariate analysis. And the predictive accuracy was also improved when incorporated RTN2 into the TNM-staging system. RTN2 could promote the proliferation, migration and invasion of gastric cancer cells in vitro and lung metastasis in vivo. Mechanistically, RTN2 interacted with IP3R, and activated ERK signalling pathway via facilitating Ca2+ release from the endoplasmic reticulum, and subsequently drove EMT in gastric cancer cells. These results proposed RTN2 as a novel promotor and potential molecular target for gastric cancer therapies.Subject terms: Gastric cancer, Calcium signalling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号