首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study sought to examine the shear modulus (i.e., an force index) of three quadriceps muscles [i.e., vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] during passive stretching to determine whether epimuscular myofascial force transmission occurs across muscles. Secondly, this study compared the shear modulus between the quadriceps muscles, in both proximal and distal regions. Twelve healthy individuals were assessed during a passive knee flexion maneuver between 0° and 90° of knee flexion with the hip in two positions: flexed (80°) vs. neutral (0°). Muscle electrical activity was also assessed during the testing. No differences were observed between the hip testing positions for myoelectric activity (p > 0.43), and for VL and VM shear modulus (p = 0.12–0.98). Similarly, there were no differences between the proximal and distal regions for all muscles (p = 0.42–0.93). RF showed a higher shear modulus with the hip in the neutral position (p = 0.004). With the hip flexed, the VL showed the greatest shear modulus among the tested muscles (p < 0.025); while with the hip in the neutral position, no differences were observed for shear modulus between VL and RF (p = 0.817). These findings suggest that epimuscular myofascial force transmission (at a muscle belly level) does not occur between the quadriceps muscles when passively flexing the knee until 90°. Whether epimuscular myofascial force transmission occurs in the quadriceps muscles bellies with greater muscle stretch (either through knee flexion or hip extension) remains to be examined.  相似文献   

2.
The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA + EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA + EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles.In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.  相似文献   

3.
BACKGROUND: Myofascial force transmission occurs between muscles (intermuscular myofascial force transmission) and from muscles to surrounding nonmuscular structures such as neurovascular tracts and bone (extramuscular myofascial force transmission). The purpose was to investigate the mechanical role of the epimuscular connections (the integral system of inter- and extramuscular connections) as well as the isolated role of extramuscular connections on myofascial force transmission and to test the hypothesis, if such connections are prestrained. METHOD OF APPROACH: Length-force characteristics of extensor hallucis longus (EHL) muscle of the rat were measured in two conditions: (I) with the neighboring EDL muscle and epimuscular connections of the muscles intact: EDL was kept at a constant muscle tendon complex length. (II) After removing EDL, leaving EHL with intact extramuscular connections exclusively. RESULTS: (I) Epimuscular connections of the tested muscles proved to be prestrained significantly. (1) Passive EHL force was nonzero for all isometric EHL lengths including very low lengths, increasing with length to approximately 13% of optimum force at high length. (2) Significant proximodistal EDL force differences were found at all EHL lengths: Initially, proximal EDL force = 1.18 +/- 0.11 N, where as distal EDL force = 1.50 +/- 0.08 N (mean +/- SE). EHL lengthening decreased the proximo-distal EDL force difference significantly (by 18.4%) but the dominance of EDL distal force remained. This shows that EHL lengthening reduces the prestrain on epimuscular connections via intermuscular connections; however; the prestrain on the extramuscular connections of EDL remains effective. (II) Removing EDL muscle affected EHL forces significantly. (1) Passive EHL forces decreased at all muscle lengths by approximately 17%. However, EHL passive force was still non-zero for the entire isometric EHL length range, indicating pre-strain of extramuscular connections of EHL. This indicates that a substantial part of the effects originates solely from the extramuscular connections of EHL. However, a role for intermuscular connections between EHL and EDL, when present, cannot be excluded. (2) Total EHL forces included significant shape changes in the length-force curve (e.g., optimal EHL force decreased significantly by 6%) showing that due to myofascial force transmission muscle length-force characteristics are not specific properties of individual muscles. CONCLUSIONS: The pre-strain in the epimuscular connections of EDL and EHL indicate that these myofascial pathways are sufficiently stiff to transmit force even after small changes in relative position of a muscle with respect to its neighboring muscular and nonmuscular tissues. This suggests the likelihood of such effects also in vivo.  相似文献   

4.
The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as surgery for restoration of function on such force transmission.

The etiology of the effects of spasticity on muscular mechanics is not fully understood. Clinically, such effects feature typically a limited joint range of motion, which at the muscle level must originate from altered muscle length–force characteristics, in particular a limited muscle length range of force exertion. In studies performed to understand what is different in spastic muscle and what the effects of remedial surgery are, muscle is considered as being independent of its surroundings. Conceivably, this is because the classical approach in muscle mechanics is built on experimenting with dissected muscles. Certainly, such approach allowed improving our understanding of fundamental muscle physiology yet it yielded implicitly a narrow point of view of considering muscle length–force characteristics as a fixed property of the muscle itself.

However, within its context of its intact connective tissue surroundings (the in vivo condition) muscle is not an isolated and independent entity. Instead, collagenous linkages between epimysia of adjacent muscles provide direct intermuscular connections, and structures such as the neurovascular tracts provide indirect intermuscular connections. Moreover, compartmental boundaries (e.g., intermuscular septa, interosseal membranes, periost and compartmental fascia) are continuous with neurovascular tracts and connect muscular and non-muscular tissues at several locations additional to the tendon origins and insertions. Epimuscular myofascial force transmission occurring via this integral system of connections has major effects on muscular mechanics including substantial proximo-distal force differences, sizable changes in the determinants of muscle length–force characteristics (e.g. a condition dependent shift in muscle optimum length to a different length or variable muscle optimal force) explained by major serial and parallel distributions of sarcomere lengths. Therefore, due to epimuscular myofascial force transmission, muscle length–force characteristics are variable and muscle length range of force exertion cannot be considered as a fixed property of the muscle.

The findings reviewed presently show that acutely, the mechanical mechanisms manipulated in remedial surgery are dominated by epimuscular myofascial force transmission. Conceivably, this is also true for the mechanism of adaptation during and after recovery from surgery. Moreover, stiffened epimuscular connections and therefore a stiffened integral system of intra- and epimuscular myofascial force transmission are indicated to affect the properties of spastic muscle. We suggest that important advancements in our present understanding of such properties, variability in the outcome of surgery and considerable recurrence of the impeded function after recovery cannot be made without taking into account the effects of epimuscular myofascial force transmission.  相似文献   


5.
Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior crural and antagonistic peroneal muscles, were investigated. All muscles were either passive or maximally active. Peroneal muscles were kept at a constant muscle tendon complex length. Either EDL or all anterior crural muscles were lengthened so that effects of lengthening of TA + EHL could be analyzed. For both lengthening conditions, a significant difference in proximally and distally measured EDL passive and active forces, indicative of epimuscular myofascial force transmission, was present. However, added lengthening of TA + EHL significantly affected the magnitude of the active and passive load exerted on EDL. For the active condition, the direction of the epimuscular load on EDL was affected; at all muscle lengths a proximally directed load was exerted on EDL, which decreased at higher muscle lengths. Lengthening of anterior crural muscles caused a 26% decrease in peroneal active force.

Extramuscular myofascial connections are thought to be the major contributor to the EDL proximo-distal active force difference. For antagonistic peroneal complex, the added distal lengthening of a synergistic muscle increases the effects of extramuscular myofascial force transmission.  相似文献   


6.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

7.
This study aimed to: (1) test the repeatability of Supersonic Shear Imaging measures of muscle shear elastic modulus of four elbow flexor muscles during isometric elbow flexion with ramped torque; (2) determine the relationship between muscle shear elastic modulus and elbow torque for the four elbow flexor muscles, and (3) investigate changes in load sharing between synergist elbow flexor muscles with increases in elbow flexor torque. Ten subjects performed ten isometric elbow flexions consisting of linear torque ramps of 30-s from 0 to 40% of maximal voluntary contraction. The shear elastic modulus of each elbow flexor muscle (biceps brachii long head [BB(LH)], biceps brachii short head [BB(SH)], brachialis [BA], and brachoradialis [BR]) and of triceps brachii long head [TB] was measured twice with individual muscles recorded in separate trials in random order. A good repeatability of the shape of the changes in shear elastic modulus as a function of torque was found for each elbow flexor muscle (r-values: 0.85 to 0.94). Relationships between the shear elastic modulus and torque were best explained by a second order polynomial, except BA where a higher polynomial was required. Statistical analysis showed that BB(SH) and BB(LH) had an initial slow change at low torques followed by an increasing rate of increase in modulus with higher torques. In contrast, the BA shear elastic modulus increased rapidly at low forces, but plateaued at higher forces. These results suggest that changes in load sharing between synergist elbow flexors could partly explain the non-linear EMG-torque relationship classically reported for BB during isometric efforts.  相似文献   

8.
Force transmission from muscle fibers via the connective tissue network (i.e., myofascial force transmission) is an important determinant of muscle function. This study investigates the role of myofascial pathways for force transmission from multitendoned extensor digitorum longus (EDL) muscle within an intact anterior crural compartment. Effects of length changes exclusively of head III of rat EDL muscle (EDL III) on myofascial force transmission were assessed. EDL III was lengthened at the distal tendon. For different lengths of EDL III, isometric forces were measured at the distal tendon of EDL III, as well as at the proximal tendon of whole EDL and at the distal tendons of tibialis anterior and extensor hallucis longus (TA+EHL) muscles. Lengthening of EDL III caused high changes in force exerted at the distal tendon of EDL III (from 0 to 1.03 +/- 0.07 N). In contrast, only minor changes were found in force exerted at the proximal EDL tendon (from 2.37 +/- 0.09 to 2.53 +/- 0.10 N). Increasing the length of EDL III decreased TA+EHL force significantly (by 7%, i.e., from 5.62 +/- 0.27 to 5.22 +/- 0.32 N). These results show that force is transmitted between EDL III and adjacent tissues via myofascial pathways. Optimal force exerted at the distal tendon of EDL III (1.03 +/- 0.07 N) was more than twice the force expected on the basis of the physiological cross-sectional area of EDL III muscle fibers (0.42 N). Therefore, a substantial fraction of this force must originate from sources other than EDL III. It is concluded that myofascial pathways play an important role in force transmission from multitendoned muscles.  相似文献   

9.
Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus–response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p = 0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p = 0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations.  相似文献   

10.
Anatomical studies have shown structural continuity between the lumbopelvic region and the lower limb. The present study aimed to verify how simultaneous changes on knee/hip positions modify the ankle’s resting position and passive torque. Thirty-seven subjects underwent an isokinetic assessment of ankle passive torque. The relationship between the absolute values of ankle passive resistance torque and the ankle angular position was used to calculate the dependent variables: ankle resting position (position in which the passive resistance torque is zero); and ankle passive torque at 0° (torque at the neutral position of the ankle in the sagittal plane). These measures were carried out under three test conditions: 0° at knee and 0° at hip (0°/0°); 90° at knee and 90° at hip (90°/90°); and, 135° at knee and 120° at hip (135°/120°). The results demonstrated that the ankle resting position shifted towards dorsiflexion when knee/hip position changed from 0°/0° to 90°/90° and shifted towards plantar flexion when knee/hip position changed from 90°/90° to 135°/120°, achieving values close to the ones at the position 0°/0°. Similarly, passive torque reduced when knee/hip position changed from 0°/0° to 90°/90°, but it increased when knee/hip position changed from 90°/90° to 135°/120°. The unexpected changes observed in ankle passive torque and resting position due to changes in knee and hip from 90°/90° to 135°/120°, cannot be explained exclusively by forces related to tissues crossing the knee and ankle. This result supports the existence of myofascial force transmission among lower limb joints.  相似文献   

11.
BACKGROUND: Effects of extramuscular connective tissues on muscle force (experimentally measured) and lengths of sarcomeres (modeled) were investigated in rat. It was hypothesized that changes of muscle-relative position affect the distribution of lengths of sarcomeres within muscle fibers. METHOD OF APPROACH: The position of extensor digitorum longus muscle (EDL) relative to intact extramuscular connective tissues of the anterior crural compartment was manipulated without changing its muscle-tendon complex length. RESULTS: Significant effects of EDL muscle relative position on proximal and distal EDL forces were found, indicating changes of extramuscular myofascial force transmission. EDL isometric force exerted at its proximal and distal tendons differed significantly. Finite-element modeling showed that the distribution of lengths of sarcomeres is altered by changes of muscle-relative position. CONCLUSIONS: It is concluded that forces exerted on a muscle via extramuscular myofascial pathways augment distributions of lengths of sarcomeres within that muscle.  相似文献   

12.
Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F (dist) > F (prox) after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically.  相似文献   

13.
Details and concepts of intramuscular, extramuscular and intermuscular myofascial force transmission are reviewed. Some new experimental data are added regarding myofascial force transmission between antagonistic muscles across the interosseal membrane of the lower hind limb of the rat. Combined with other result presented in this issue, it can be concluded that myofascial force transmission occurs between all muscles within a limb segment. This means that force generated within sarcomeres of an antagonistic muscle may be exerted at the tendon of target muscle or its synergists.

Some, in vivo, but initial indications for intersegmental myofascial force transmission are discussed. The concept of myofascial force transmission as an additional load on the muscle proved to be fruitful in the analysis of its muscular effects. In spastic paresis and for healthy muscles distal myofascial loads are often encountered, but cannot fully explain the movement limitations in spastic paresis. Therefore, the concept of simultaneous and opposing myofascial loads is analyzed and used to formulate a hypothesis for explaining the movement limitation: Myofascially transmitted antagonistic force is borne by the spastic muscle, but subsequently transmitted again to distal tendons of synergistic muscles.  相似文献   


14.
Force transmission in rat anterior crural compartment, containing tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL) muscles, was investigated. These muscles together with the muscles of the peroneal compartment were excited maximally. Force was measured at both proximal and distal tendons of EDL muscle as well as at the tied distal tendons of TA and EHL muscles (the TA + EHL complex). Effects of TA + EHL complex length and force on proximally and distally measured forces of EDL muscle kept at constant muscle-tendon complex length were assessed. Length changes of EDL muscle were imposed by movement of the proximal force transducer to different positions.Proximal EDL force was unequal to distal EDL force (active as well as passive) over a wide range of EDL muscle-tendon complex lengths. This is an indication that force is also transmitted out of EDL muscle via pathways other than the tendons (i.e. inter- and/or extramuscular myofascial force transmission). At constant low EDL length, distal lengthening of the TA + EHL complex increased proximal EDL force and decreased distal EDL force. At optimum EDL length, TA+EHL active force was linearly related to the difference between proximal and distal EDL active force. These results indicate intermuscular myofascial force transmission between EDL muscle and the TA + EHL complex. The most likely pathway for this transmission is via connections of the intact intermuscular connective tissue network. The length effects of the TA + EHL complex can be understood on the basis of changes in the configuration, and consequently the stiffness, of these connections. Damage to connective tissue of the compartment decreased the proximo-distal EDL force difference, which indicates the importance of an intact connective tissue network for force transmission from muscle fibers to bone.  相似文献   

15.
Elements of what we call myofascial force transmission today have been on peoples mind for a long time, usually implicitly, sometimes quite explicitly.A lot is there to be learned from the history of our knowledge on muscle and movement.There is little doubt about the presence and effectiveness of the mechanism and pathways of epimuscular myofascial force transmission. However, we should learn much more about the exact conditions at which such transmission is not only of fundamental biomechanical interest, but also quantitatively so important that it has to be considered for its effects in health and disease. Even if the quantitative effects in terms of force would prove small, one should realize that this mechanism will change the principles of muscular function drastically.A new vision on functional anatomy, as well as the application of imaging techniques and 3-D reconstruction of in vivo muscle, will aid that process of increased quantitative understanding, despite usual limitations regarding the mechanics in such experiments. I expect it is fair to say that without understanding myofascial force transmission we will never be able to understand muscular function completely.  相似文献   

16.
Effects on force of changes of the position of extensor digitorum longus muscle (EDL) relative to surrounding tissues were investigated in rat. Connective tissue at the muscle bellies of tibialis anterior (TA), extensor hallucis longus (EHL) and EDL was left intact, to allow myofascial force transmission. The position of EDL muscle was altered, without changing EDL muscle-tendon complex length, and force exerted at proximal and distal tendons of EDL as well as summed force exerted at the distal tendons of TA and EHL muscles (TA+EHL) were measured. Proximal and distal EDL forces as well as distal TA+EHL force changed significantly on repositioning EDL muscle. These muscle position-force characteristics were assessed at two EDL lengths and two TA+EHL lengths. It was shown that changes of muscle force with length changes of a muscle is the result of the length changes per se, as well as of changes of relative position of parts of the muscle. It is concluded that in addition to length, muscle position relative to its surroundings co-determines isometric muscle force.  相似文献   

17.
This study sought to resolve a longstanding debate of the function of anconeus. Intramuscular and surface electromyography electrodes recorded muscle activity from two regions of anconeus and from typical elbow flexion and extension muscles. Eleven participants performed pronation–supination around the medial and lateral axes of the forearm, elbow flexion–extension in pronation, supination and neutral positions of the forearm, and gripping. Maximal voluntary contractions (MVC) and submaximal (10% MVC) force-matching tasks were completed. Activity varied between longitudinal (AL) and transverse (AT) segments of anconeus. Although both muscle regions were active across multiple directions (including opposing directions), AL was more active during pronation than supination, whereas AT showed no such difference. During pronation, activity of AL and AT was greatest about the lateral forearm axis. AT was more active during elbow extension with the forearm in pronation, whereas AL did not differ between pronated and neutral forearm alignment. These findings are consistent with the proposal that AL makes a contribution to control of abduction of the ulna during forearm pronation. Different effects of forearm position on AL and AT activity during elbow extension may be explained by the anatomical differences between the regions. These data suggest anconeus performs multiple functions at the elbow and forearm and this varies between anatomically distinct regions of the muscle.  相似文献   

18.
Effects of an exhaustive eccentric exercise (EE) on the motor control of maximal velocity rhythmic elbow extension/flexion movement (RM) were examined in eight male students. The exhaustive EE consisted of 100 maximal eccentric actions of the elbow flexor muscles. Movement range was 40–170° in EE at an angular velocity of 2 rad s?1. A directive scaled RM of 60° with visual feedback was performed in a sitting position, with the right forearm fixed to the lever arm in horizontal plane above protractor. Surface electromyographic activity (EMG) was recorded from the biceps brachii (BB) and triceps brachii (TB) muscles. Maximal isokinetic eccentric and concentric tests and RM test were conducted before, after, 0.5 h, 2 days and 7 days after the exercise. Dynamic force production was deteriorated after EE (P < .001), and did not recover fully within 7 days. The delayed recovery phase was characterized by delayed onset of muscle soreness (DOMS) and elevated serum creatine kinase (CK) activity. The RM test revealed a delayed increase of the fatigued BB muscle EMG activity, but the maximal RM velocity could be preserved. The present results emphasize the capacity of the neuromuscular system to compensate for prolonged eccentric-induced contractile failure by optimizing antagonistic muscles coordination in a demanding rhythmic task. The underlying compensatory mechanisms could be related to increased sensitization of small diameter muscle nerve endings.  相似文献   

19.
Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exerted (ratio approximately 118%) after distal than after equal proximal lengthening. For proximal force, the reverse occurred (ratio approximately 157%). Passive EDL force exerted at the lengthened end was 7-10 times the force exerted at the nonlengthened end. While kept at constant length, synergists (tibialis anterior + extensor hallucis longus: active muscle force difference approximately -10%) significantly decreased in force by distal EDL lengthening, but not by proximal EDL lengthening. We conclude that force exerted at the tendon at the lengthened end of a muscle is higher because of the extra load imposed by myofascial force transmission on parts of the muscle belly. This is mediated by changes of the relative position of most parts of the lengthened muscle with respect to neighboring muscles and to compartment connective tissues. As a consequence, muscle relative position is a major codeterminant of muscle force for muscle with connectivity of its belly close to in vivo conditions.  相似文献   

20.
The specific purpose of the present study was to show that extramuscular myofascial force transmission exclusively has substantial effects on muscular mechanics. Muscle forces exerted at proximal and distal tendons of the rat extensor digitorium longus (EDL) were measured simultaneously, in two conditions (1) with intact extramuscular connections (2) after dissecting the muscles' extramuscular connections to a maximum extent without endangering circulation and innervation (as in most in situ muscle experiments). A finite element model of EDL including the muscles' extramuscular connections was used to assess the effects of extramuscular myofascial force transmission on muscular mechanics, primarily to test if such effects lead to distribution of length of sarcomeres within muscle fibers. In condition (1), EDL isometric forces measured at the distal and proximal tendons were significantly different (F(dist) > F(prox), DeltaF approximates maximally 40% of the proximal force). The model results show that extramuscular myofascial force transmission causes distributions of strain in the fiber direction (shortening in the proximal, lengthening in the distal ends of fibers) at higher lengths. This indicates significant length distributions of sarcomeres arranged in series within muscle fibers. Stress distributions found are in agreement with the higher distal force measured, meaning that the muscle fiber is no longer the unit exerting equal forces at both ends. Experimental results obtained in condition (2) showed no significant changes in the length-force characteristics (i.e., proximo-distal force differences were maintained). This shows that a muscle in situ has to be distinguished from a muscle that is truly isolated in which case the force difference has to be zero. We conclude that extramuscular myofascial force transmission has major effects on muscle functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号