首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy’s law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.  相似文献   

2.
The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390 kPa) compared to the NP (100 kPa) or AF (30 kPa). The permeability was very different across tissue regions, with the AF permeability (64 E−16 m4/N s) higher than the NP and CEP (~5.5 E−16 m4/N s). Additionally, a normalized time-constant (3000 s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical behavior and transport.  相似文献   

3.
In Expt 1, plants of tall fescue (Festuca arundinacea Schreb.), Italian ryegrass (Lolium multiflorum Lam.) and their F1 hybrid were grown in soil-based compost in a controlled environment, and subjected to full or partial irrigation for 20 d. In Expt 2, plants of the parent species were grown in nutrient solution in the same environment and subjected to osmotic stress (0.76 MPa) for 2 d. In both experiments, distribution of growth in the leaf growing zone (at the base of the growing leaf) was determined, and elastic and plastic compliances were measured on methanol-killed samples of growing zone and of mature lamina using an extensiometer. In Expt 2 plastic compliance coefficient of extension, extensibility, and hydraulic conductance were calculated from changes in leaf extension rate occasioned by imposing linear stress. 'Plastic and elastic compliances of growing zones were 10-20 times greater than those of mature laminae. In both species, drought reduced (a) leaf extension rate, (b) the length of the growing zone, the height of maximum growth, (d) the plastic compliance of whole bases (Expt 1), and (e) hydraulic conductance. The elastic compliance of whole leaf bases was unaffected by drought, but when expressed per unit length of growing zone was increased by drought. Killing with methanol reduced the plastic compliance of leaf bases in control plants, but not in droughted plants.F. arundinacea differed from L. multiflorum in having (a) a lower leaf extension rate (although drought reduced extension by the same proportion in both species), (b) a longer growing zone in droughted plants in Expt 2, a lower elastic and plastic compliance of whole killed leaf bases and laminae, (d) slightly higher plastic compliance in attached growing leaves, and (e) lower plastic compliance per unit length of growing zone in attached leaves. The hybrid was generally intermediate between the parents. the results are discussed in relation to methodology and to crop improvement.Key words: Extensibility, extension coefficient, hydraulic conductance, elastic compliance, plastic compliance, leaf growth, leaf extension rate.   相似文献   

4.
Hydraulic lift, the transport of water from deep in the soil through plant root systems into the drier upper soil layers, has been demonstrated in several woody plant species. Here the volume of water involved in hydraulic lift by a mature sugar maple tree is estimated. Twenty-four intact soil cores were collected from the vicinity of a sugar maple tree at the same positions at which thermocouple psychrometers had been placed. Desorption measurements were made on the soil cores and the data were fitted to the Campbell relation for soil matric potential versus soil water content . The psychrometer data were filtered to obtain the diurnal component contributed by hydraulic lift. The diurnal component in was combined with the Campbell relation for each soil core to obtain the increase in soil water content due to hydraulic lift. The additional water contents were numerically integrated to obtain a volume of 102±54 1 of water which was hydraulically lifted each night. The volume of hydraulically lifted water (HLW) is sufficiently great that in ecosystems where hydraulic lift occurs it should be included in models for calculating the water balance. However, a previous analysis of the stable hydrogen isotope composition (D) of water in understory plants around trees conducting hydraulic lift implies a much greater volume of HLW than that calculated from the analysis performed above. To reconcile these differences, it is hypothesized that some understory plants preferentially extract HLW due to its higher matric potential and that the proportion of this water source within the xylem sap of at least some understory plants that use HLW was so great that the roots of these plants must therefore be in close proximity to the tree roots from which the HLW comes. The results of this study have implications for studies of plant competition where positive associations may exist as well as for ion uptake, nutrient cycling and the design of agroforestry systems.  相似文献   

5.
【目的】了解低含水量饲料对黑水虻Hermetia illucens生长发育的影响。【方法】在27℃、RH 80%、光周期14L∶10D的饲养条件下,以含水量70%人工饲料饲养黑水虻为对照,比较饲料含水量降为30%和50%时黑水虻幼虫的存活率、幼虫体重、雌雄成虫体长、羽化率以及不同发育阶段持续时间等生物学参数与对照组的差异。【结果】30%和50%含水量饲料饲养幼虫平均体重与对照幼虫相比显著降低(P<0.05),30%和50%含水量两个处理间体重亦有显著差异(P<0.05)。黑水虻幼虫不能在含水量30%的人工饲料中发育至预蛹,大部分幼虫至13 d时死亡。50%含水量饲料饲养幼虫比对照延迟5 d出现预蛹,滞后14 d结束预蛹,预蛹过程耗时18 d,比对照延长8 d;50%含水量饲料饲养雌雄虫比对照成虫体长显著缩短(P<0.05),雌雄成虫羽化时间亦比对照延后5 d,雌雄成虫羽化历期均为18 d,比对照增加5 d;50%含水量饲料饲养黑水虻自卵孵化至蛹全部羽化为成虫所需时间比对照延长10.67 d,所需时间为55.67 d,而对照仅需45.00 d;但是50%含水量饲料饲养幼虫存活率和成虫羽化率与对照相比差异均不显著(P>0.05)。【结论】含水量低于70%的人工饲料不利于黑水虻的生长发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号