首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subaxial cervical facets are important load-bearing structures, yet little is known about their mechanical response during physiological or traumatic intervertebral motion. Facet loading likely increases when intervertebral motions are superimposed with axial compression forces, increasing the risk of facet fracture. The aim of this study was to measure the mechanical response of the facets when intervertebral axial compression or distraction is superimposed on constrained, non-destructive shear, bending and rotation motions. Twelve C6/C7 motion segments (70 ± 13 yr, nine male) were subjected to constrained quasi-static anterior shear (1 mm), axial rotation (4°), flexion (10°), and lateral bending (5°) motions. Each motion was superimposed with three axial conditions: (1) 50 N compression; (2) 300 N compression (simulating neck muscle contraction); and, (3) 2.5 mm distraction. Angular deflections, and principal and shear surface strains, of the bilateral C6 inferior facets were calculated from motion-capture data and rosette strain gauges, respectively. Linear mixed-effects models (α = 0.05) assessed the effect of axial condition. Minimum principal and maximum shear strains were largest in the compressed condition for all motions except for maximum principal strains during axial rotation. For right axial rotation, maximum principal strains were larger for the contralateral facets, and minimum principal strains were larger for the left facets, regardless of axial condition. Sagittal deflections were largest in the compressed conditions during anterior shear and lateral bending motions, when adjusted for facet side.  相似文献   

2.
Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.  相似文献   

3.
Despite the findings that peak anterior shear load is highly correlated with low-back pain reporting, very little research has been conducted to determine how vertebral shear injury potential is influenced. The current study quantified the combined effects of vertebral joint compression and flexion/extension postural deviation from neutral on ultimate shear failure. Ninety-six porcine cervical specimens (48C3-C4, 48C5-C6) were tested. Each specimen was randomly assigned to one of twelve combinations of compressive force (15%, 30%, 45%, or 60% of predicted compressive failure force) and flexion/extension postural deviation (extended, neutral, or flexed). Vertebral joint shear failure was induced by applying posterior shear displacement of the caudal vertebra at a constant rate of 0.15 mm/s. Throughout shear failure tests, vertebral joint kinematics were measured using an optoelectronic camera and a series of infrared light emitting diodes while shear force was measured from load cells rigidly interfaced in series with linear actuators that applied the shear displacement. Measurements of shear stiffness, ultimate force, displacement, and energy stored were made from the force-displacement data. Compressive force and postural deviation demonstrated main effects without a statistically significant interaction for any of the measurements. Shear failure force increased by 11.1% for each 15% increment in compressive force (p<0.05). Postural deviation from neutral impacted ultimate shear failure force by a 12.8% increase with extension (p<0.05) and a 13.2% decrease with flexion (p<0.05). Displacement at ultimate failure was not significantly altered by either compressive force or postural deviation. These results demonstrate that shear failure force may be governed by changes in facet articulation, either by postural deviation or by reducing vertebral joint height through compression that alter the moment arm length between the center of facet contact pressure and the pars interarticularis location. However, objective evidence of this alteration currently does not exist. Both compression and flexion/extension postural deviation should be equally considered while assessing shear injury potential.  相似文献   

4.
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2–C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.  相似文献   

5.
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3–C4 vertebral joint with each combination of five compressive force magnitudes (0–60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.  相似文献   

6.
Finite element (FE) modeling is an important tool for studying the cervical spine in normal, injured and diseased conditions. To understand the role of mechanical changes on the spine as it goes from a normal to a diseased or injured state, experimental studies are needed to establish the external response of young, normal cervical spinal segments compared to injured or degenerated cervical spinal segments under physiologic loading. It is important to differentiate injured or degenerated specimens from young, normal specimens to provide accurate experimental results necessary for the validation of FE models. This study used seven young, normal fresh adult cadaver cervical spine segments C2-T1 ranging in age from 20 to 51 years. Prior to testing, the spines were graded in three ways: specimen quality, facet degeneration and disc degeneration. Spine segments were tested in flexion/extension, and the range of loads applied to the specimens was 0.33, 0.5, 1.0, 1.5 and 2.0 Nm. These loads resulted in rotations in the direction of loading as the primary response to loading. In general, results for young, normal specimens showed greater flexibility in flexion and less flexibility in extension than results previously reported in the literature. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. These experimental results will be used to validate FE models of young, normal cervical spines.  相似文献   

7.
Clinical, epidemiological, and biomechanical studies suggest the involvement of the cervical facet joint in neck pain. Mechanical studies have suggested the facet capsular ligament to be at risk for subfailure tensile injury during whiplash kinematics of the neck. Ligament mechanical properties can be altered by subfailure injury and such loading can induce cellular damage. However, at present, there is no clear understanding of the physiologic context of subfailure facet capsular ligament injury and mechanical implications for whiplash-related pain. Therefore, this study aimed to define a relationship between mechanical properties at failure and a subfailure condition associated with pain for tension in the rat cervical facet capsular ligament. Tensile failure studies of the C6/C7 rat cervical facet capsular ligament were performed using a customized vertebral distraction device. Force and displacement at failure were measured and stiffness and energy to failure were calculated. Vertebral motions and ligament deformations were tracked and maximum principal strains and their directions were calculated. Mean tensile force at failure (2.96 +/- 0.69 N) was significantly greater (p < 0.005) than force at subfailure (1.17 +/- 0.48 N). Mean ligament stiffness to failure was 0.75 +/- 0.27 N/mm. Maximum principal strain at failure (41.3 +/- 20.0%) was significantly higher (p = 0.003) than the corresponding subfailure value (23.1 +/- 9.3%). This study determined that failure and a subfailure painful condition were significantly different in ligament mechanics and findings provide preliminary insight into the relationship between mechanics and pain physiology for this ligament. Together with existing studies, these findings offer additional considerations for defining mechanical thresholds for painful injuries.  相似文献   

8.
Understanding proximal femur fracture may yield new targets for fracture prevention screening and treatment. The goal of this study was to characterize force–displacement and failure behaviours in the proximal femur between displacement control and impact loading fall simulations. Twenty-one human proximal femurs were tested in two ways, first to a sub-failure load at a constant displacement rate, then to fracture in an impact fall simulator. Comparisons of sub-failure energy and stiffness were made between the tests at the same compressive force. Additionally, the impact failure tests were compared with previous, constant displacement rate failure tests (at 2 and 100 mm/s) in terms of energy, yield force, and stiffness. Loading and displacement rates were characterized and related to specimen stiffness in the impact tests. No differences were observed between the sub-failure constant displacement and impact tests in the aforementioned metrics. Comparisons between failure tests showed that the impact group had the lowest absorbed energy, 24% lower maximum force and 160% higher stiffness than the 100 mm/s group (p<0.01p<0.01 for all), but suffered from low statistical power to differentiate the donor age and specimen BMD. Loading and displacement rates for the specimens tested using impact varied during each test and between specimens and did not show appreciable viscoelasticity. These results indicate that constant displacement rate testing may help understand sub-failure mechanical behaviour, but may not elucidate failure behaviours. The differences between the impact and constant displacement rate fall simulations have important ramifications for interpreting the results of previous experiments.  相似文献   

9.
The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion–extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.  相似文献   

10.
The injury mechanism and magnitude of failure load of C2 fractures are important in the clinical treatment of its fixation. The magnitudes of the failure load of C2 and the mechanism of injury in vivo are uncertain. Accordingly, nine C2 vertebrae obtained from cadaver spines, ranging in age from 51 to 80 years, were used for the study. Special restraint conditions were applied to yield specific fracture of C2. With the posterior element potted postero-anteriorly up to one-quarter of the inferior facet, posterior shear force ranging from 840 to 1220N was required to cause fracture across the pars interarticularis. For odontoid fracture study, a special rig was fabricated to encapsulate the body of C2 in a cell using ISOPON, and a thin layer of ISOPON sandwiched between the inferior facets and two lateral plates. The assembled rig permits slight sagittal movement of C2 about the cup lateral pivot supports. Failure load of between 900 and 1500N was recorded for odontoid fracture. These values are in agreement with published data. The experiment carried out under these two different restraint conditions had specifically resulted in different fractures of C2. In reality, depending on factors such as the inclination of this force vector applied to the head, the precise posture at the time of trauma, the spinal geometry, and the physical properties, different types of fracture patterns of C2 may be produced. This additional data will be useful in the biomechanical study of C2 vertebra using analytical approaches, and in surgical anterior/posterior fixation using screws.  相似文献   

11.
This study examined the effect of loading (displacement) rate on the tensile mechanics of cervical spine functional spinal units. A total of 40 isolated functional spinal units (two vertebrae and the adjoining soft tissues) from juvenile male baboons (10+/-0.6-human equivalent years old) were subjected to tensile loading spanning four orders of magnitude from 0.5 to 5000 mm/s. The stiffness, ultimate failure load, and corresponding displacement at failure were measured for each specimen and normalized by spinal geometry to examine the material properties as well as the structural properties. The tensile stiffness, failure load, normalized stiffness, and normalized failure load significantly increased (ANOVA, p<0.001) with increasing displacement rate. From the slowest to fastest loading rate, a two-fold increase in stiffness and four-fold increase in failure load were observed. The tensile failure strains (1.07+/-0.31 mm/mm strain) were not significantly correlated with loading rate (ANOVA, p=0.146). Both the functional (non-destructive stiffness and normalized stiffness) and failure mechanics of isolated functional spinal units exhibited a power-law relationship with displacement rate. Modeling efforts utilizing these rate-dependent characteristics will enhance our understanding of the tensile viscoelastic response of the spine and enable improved dynamic injury prevention schemes.  相似文献   

12.
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.  相似文献   

13.
A numerical simulation was devised to determine ligament strains, facet face interaction, and disk fiber strain in the lumbar intervertebral joint under load. This technique uses experimentally derived load deflection and morphologic data from lumbar cadaver specimens from which initial and displaced soft tissue attachment points can be calculated. This allows the strain data to be derived. The effect of disk bulge is also considered. The calculated strains of most ligaments except the facet capsular ligaments were found to be insensitive to anatomical measurement variability of +/- 1 mm.  相似文献   

14.
Previous studies of biomechanical properties of femur-anterior cruciate ligament-tibia complex (FATC) utilized a wide variety of testing methodologies, particularly with respect to ligament orientation relative to loading direction. A new device was designed and built to test the anterior-posterior displacement of the intact porcine knee at 30 and 90 deg of flexion, as well as the tensile properties of the FATC at any loading direction and flexion angle. Tensile tests were performed with the knees at 30 and 90 deg of flexion with the loading direction along either the axis of the tibia (tibial axis) or the axis of the anterior cruciate ligament (ligament axis). The results showed that the stiffness, ultimate load and energy absorbed were all significantly increased when the FATC was tested along the ligament axis. This study demonstrates the importance of alignment in the evaluation of the biomechanical characteristics of the femur-ACL-tibia complex.  相似文献   

15.
The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion-extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.  相似文献   

16.
The technique used to incise the disc during discectomy may play a role in the subsequent healing and change in biomechanical stiffness of the disc. Several techniques of lumbar disc annulotomy have been described in clinical reports. The purpose of this paper was to study the influence of annulotomy technique on motion segment stiffness using a finite element model. Four incision methods (square, circular, cross, and slit) were compared. The analyses showed that each of the annular incisions produced increase in motions under axial moment loadings with circular incision producing the largest change in the corresponding rotational motion. Under shear loading mode, cross and slit-type annular incisions produced slightly larger changes in the principal motions of the disc than square and circular incisions. All other incision types considered in the current study produced negligibly small increase in motion under rest of the loading conditions. In addition to annulotomy, when nucleotomy was also included in the analyses, once again cross and slit incisions produced larger change in motion under shear loading mode as compared to the other two incision types. A comparison between the four types of annular incisions showed that cross incision produced an increase in motion larger than those produced by the other three incisions under flexion/extension and lateral moment loading and both shear force loadings. Circular incision produced the largest increase in motion under axial moment load in comparison to those produced by square, cross, and slit incisions. Sagittal plane symmetry was influenced by the incision injury to the motion segment leading to coupled motions as well as increased facet loads. From the study it can be concluded that the increase inflexibility of the disc due to annulotomy depends on the type of annulotomy and the annulotomy also produce asymmetrical deformations leading to increased facet loading.  相似文献   

17.
A technique is described for measuring load magnitude and resultant load contact location in the facet joint in response to applied loads and moments, and the technique applied to the canine lumbar spine motion segment. Due to the cantilever beam geometry of the cranial articular process, facet joint loads result in surface strains on the lateral aspect of the cranial articular process. Strains were quantified by four strain gages cemented to the bony surface of the process. Strain measured at any one gage depended on the loading site on the articular surface of the caudal facet and on the magnitude of the facet load. Determination of facet loads during in vitro motion segment testing required calibration of the strains to known loads of various magnitudes applied to multiple sites on the caudal facet. The technique is described in detail, including placement of the strain gages. There is good repeatability of strains to applied facet loads and the strains appear independent of load distribution area. Error in the technique depends on the location of the applied facet loads, but is only significant in nonphysiologic locations. The technique was validated by two independent methods in axial torsion. Application of the technique to five in vitro canine L2-3 motion segments testing resulted in facet loads (in newtons, N) of 74+ / -23 N (mean + / -STD) in 2 newton-meter, Nm, extension, to unloaded in flexion. Lateral bending resulted in loads in the right facet of 40+ / -32 N for 1 Nm right lateral bending and 54+ / -29 N for 1 Nm left lateral bending. 4 Nm Torsion with and without 100 N axial compression resulted in facet loads of 92+ / -27 N and 69+ / -19 N, respectively. The technique is applicable to dynamic and in vivo studies.  相似文献   

18.
Epidemiological data and clinical indicia reveal devastating consequences associated with pediatric neck injuries. Unfortunately, neither injury prevention nor clinical management strategies will be able to effectively reduce these injuries or their effects on children, without an understanding of the cervical spine developmental biomechanics. Thus, we investigated the relationship between spinal development and the functional (stiffness) and failure biomechanical characteristics of the cervical spine in a baboon model. A correlation study design was used to define the relationships between spinal tissue maturation and spinal biomechanics in both tension and compression. Eighteen baboon cervical spine specimens distributed across the developmental spectrum (1–26 human equivalent years) were dissected into osteoligamentous functional spinal units. Using a servo-hydraulic MTS, these specimens (Oc–C2, C3–C4, C5–C6, C7–T1) were non-destructively tested in tension and compression and then displaced to failure in tension while measuring the six-axes of loads and displacements. The functions describing the developmental biomechanical response of the cervical spine for stiffness and normalized stiffness exhibited a significant direct relationship in both tension and compression loading. Similarly, the tensile failure load and normalized failure load demonstrated significant maturational increases. Further, differences in biomechanical response were observed between the spinal levels examined and all levels exhibited clinically relevant failure patterns. These data support our understanding of the child cervical spine from a developmental biomechanics perspective and facilitate the development of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects.  相似文献   

19.
A six-degrees-of-freedom mechanical linkage device was designed and used to study the unconstrained motion of ten intact human cadaver knees. The knees were subjected to externally applied varus and valgus (V-V) moments up to 14 N-m as well as anterior and posterior (A-P) loads up to 100 N. Tests were done at four knee flexion angles; 0, 30, 45, and 90 deg. Significant coupled axial tibial rotation was found, up to 21.0 deg for V-V loading (at 90 deg of flexion) and 14.2 deg for A-P loading (at 45 deg of flexion). Subsequently, the knees were dissected and the locations of the insertion sites to the femur and tibia for the anteromedial (AM), posterolateral (PL), and intermediate (IM) portions of the ACL were identified. The distances between the insertion sites for all external loading conditions were calculated. In the case when the external load was zero, the AM portion of the ACL lengthened with knee flexion, while the PL portion shortened and the intermediate (IM) portion did not change in length. With the application of 14 N-m valgus moment, the PL and IM portions of the ACL lengthened significantly more than the AM portion (p less than 0.001). With the application of 100 N anterior load, the AM portion lengthened slightly less than the PL portion, which lengthened slightly less than the IM portion (p less than 0.005). In general, the amount of lengthening of the three portions of the ACL during valgus and anterior loading was observed to increase with knee flexion angle (p less than 0.001).  相似文献   

20.
Variations of stiffness and strength along the human cervical spine   总被引:3,自引:1,他引:3  
The load-displacement response and strength of the mid (C2-C5) and lower (C5-T1) cervical regions were determined for combinations of sagittal loads, in vitro. In unpaired t-test comparisons, the mid cervical region was significantly stiffer in compression and extension than the lower region. In tests to failure, failure in six out of seven mid cervical specimens resulted from flexion alone, while combined compression-flexion was required to fail five of the eight lower cervical specimens. Post-test dissections revealed no regional differences in the pattern of failure. In addition to sagittal tests, the load-displacement responses of three-vertebrae cervical specimens were measured with the upper body axially rotated with respect to the lower body. The effect of this pre-torsion was to diminish the zone of low slope near zero load for axial, shear, and flexion motion. Three of the four axially rotated specimens failed in flexion without added compression. These controlled load-displacement measurements of cervical spine specimens describe for the first time the continuous flexion-compression response up to failure, and suggest that consideration of the biomechanics of three apparently distinct mobile regions of the cervical spine (C1-C2, C2-C5, C5-T1) may facilitate the interpretation of hazardous conditions and the diagnosis of injury. These data also provide basic information for the in vitro investigation of passive cervical spine protection such as helmets and head-rests, suggesting that the head should be kept in a non-rotated position to reduce risk of injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号