首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer.  相似文献   

5.
6.
7.
8.
9.
The aberrant expression of hypoxia-inducible factor 1 alpha (HIF1A)-antisense RNA 2 (HIF1A-AS2) was found in various human cancers including breast cancer. The aim of this study was to present more evidence about the role HIF1A-AS2 on triple-negative breast cancer (TNBC). In our results, HIF1A-AS2 was also found to be upregulated in TNBC tissues compared with non-TNBC tissues or adjacent normal tissues. Besides, HIF1A-AS2 expression was also elevated in TNBC cell lines compared with the normal breast epithelial cell line. Moreover, high expression of HIF1A-AS2 was associated with lymph node metastasis, distant metastasis and unfavorable histological grade in TNBC patients. Survival analysis showed a TNBC patient with high HIF1A-AS2 expression had shorter overall survival than patients with low HIF1A-AS2 expression, and HIF1A-AS2 high expression acted as an independent poor prognostic factor for overall survival in TNBC patients. The cell migration and invasion assays suggested inhibition of HIF1A-AS2 obviously depressed TNBC cell migration and invasion. In conclusion, HIF1A-AS2 serves as a novel biomarker for predicting clinical progression and prognosis in TNBC.  相似文献   

10.
11.
12.
13.
Chemoresistance constitutes a major challenge in the treatment of triple-negative breast cancer (TNBC). Mixed-Lineage Kinase 4 (MLK4) is frequently amplified or overexpressed in TNBC where it facilitates the aggressive growth and migratory potential of breast cancer cells. However, the functional role of MLK4 in resistance to chemotherapy has not been investigated so far. Here, we demonstrate that MLK4 promotes TNBC chemoresistance by regulating the pro-survival response to DNA-damaging therapies. We observed that MLK4 knock-down or inhibition sensitized TNBC cell lines to chemotherapeutic agents in vitro. Similarly, MLK4-deficient cells displayed enhanced sensitivity towards doxorubicin treatment in vivo. MLK4 silencing induced persistent DNA damage accumulation and apoptosis in TNBC cells upon treatment with chemotherapeutics. Using phosphoproteomic profiling and reporter assays, we demonstrated that loss of MLK4 reduced phosphorylation of key DNA damage response factors, including ATM and CHK2, and compromised DNA repair via non-homologous end-joining pathway. Moreover, our mRNA-seq analysis revealed that MLK4 is required for DNA damage-induced expression of several NF-кB-associated cytokines, which facilitate TNBC cells survival. Lastly, we found that high MLK4 expression is associated with worse overall survival of TNBC patients receiving anthracycline-based neoadjuvant chemotherapy. Collectively, these results identify a novel function of MLK4 in the regulation of DNA damage response signaling and indicate that inhibition of this kinase could be an effective strategy to overcome TNBC chemoresistance.Subject terms: Chemotherapy, Oncogenes, Cell signalling, Breast cancer  相似文献   

14.
Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8–PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.Subject terms: Breast cancer, Immune evasion  相似文献   

15.
16.
Triple-negative breast cancer (TNBC) is a special subtype of breast cancer (BC) with poor prognosis. Although some molecular mechanisms of TNBC have been elucidated, the efficacy of current treatments is limited. Therefore, it is urgently demanded to screen for novel biomarkers and drug targets for TNBC. In this study, we obtained four independent data sets (GSE76250, GSE31448, GSE43358, and METABRIC) from the Gene Expression Omnibus (GEO) database and the cBioPortal website. In the GSE76250 data set, 890 differentially expressed genes were identified and weighted gene co-expression network analysis was performed based on them. Then, two preserved modules associated with the KI67 score were detected. Gene ontology and pathway enrichment analyses showed genes in the modules participated in some cancer-related biological processes or pathways. Non-SMC condensin I complex subunit G (NCAPG) and ATP-binding cassette subfamily A member 9 (ABCA9) were identified as hub genes of the modules, and the significance of hub genes was validated in the GSE43358 data set. Finally, their prognostic value was assessed by survival analysis. These findings suggested that NCAPG and ABCA9 may be the key genes of TNBC. Moreover, ABCA9 was first reported in TNBC. They deserved further studies.  相似文献   

17.
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen‐inducible gene‐6 (MIG‐6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG‐6 is upregulated in TNBC and that MIG‐6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG‐6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG‐6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α‐regulated glycolytic genes, substantiating the comprehensive regulation of MIG‐6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG‐6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG‐6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.  相似文献   

18.
19.
Triple‐negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African‐American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time‐consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label‐free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole‐tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号