首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Following stroke, aberrant three dimensional multijoint gait impairments emerge that present in kinematic asymmetries such as circumduction. A precise pattern of cross-planar coordination may underlie abnormal hemiparetic gait as several studies have underscored distinctive neural couplings between medio-lateral control and sagittal plane progression during walking. Here we investigate potential neuromechanical constraints governing abnormal multijoint coordination post-stroke. 15 chronic monohemispheric stroke patients and 10 healthy subjects were recruited. Coupled torque production patterns were assessed using a volitional isometric torque generation task where subjects matched torque targets for a primary joint in 4 directions while receiving visual feedback of the magnitude and direction of the torque. Secondary torques at other lower limb joints were recorded without subject feedback. We find that common features of cross-planar connectivity in stroke subjects include statistically significant frontal to sagittal plane kinetic coupling that overlay a common sagittal plane coupling in healthy subjects. Such coupling is independent of proximal or distal joint control and limb biomechanics. Principal component analysis of the stroke aggregate kinetic signature reveals unique abnormal frontal plane coupling features that explain a larger percentage of the total torque coupling variance. This study supports the idea that coupled cross-planar kinetic outflow between the lower limb joints uniquely emerges during pathological control of frontal plane degrees of freedom resulting in a generalized extension of the limb. It remains to be seen if a pattern of lower limb motor outflow that is centrally mediated contributes to abnormal hemiparetic gait.  相似文献   

2.
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0 ± 4.7 yrs, 1.80 ± 0.05 m, 74.5 ± 8.2 kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1 m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint’s contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking.  相似文献   

3.
Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation.  相似文献   

4.
Background: There is growing evidence that stroke survivors can adapt and improve step length symmetry in the context of split-belt treadmill (SBT) walking. However, less knowledge exists about the strategies involved for such adaptations. This study analyzed lower limb muscle activity in individuals post-stroke related to SBT-induced changes in step length. Methods: Step length and surface EMG activity of six lower limb muscles were evaluated in individuals post-stroke (n = 16) during (adaptation) and after (after-effects) walking at unequal belt speeds. Results: During adaptation, significant increases in EMG activity were mainly found in proximal muscles (p  0.023), whereas after-effects were observed particularly in the distal muscles. The plantarflexor EMG increased after walking on the slow belt (p  0.023) and the dorsiflexors predominantly after walking on the fast belt (p  0.017) for both, non-paretic and paretic-fast conditions. Correlation analysis revealed that after-effects in step length were mainly associated with changes in distal paretic muscle activity (0.522  r  0.663) but not with functional deficits. Based on our results, SBT walking could be relevant for training individuals post-stroke who present shorter paretic step length combined with dorsiflexor weakness, or individuals with shorter nonparetic step length and plantarflexor weakness.  相似文献   

5.
Soft tissue artefacts (STA) are a major error source in skin marker-based measurement of human movement, and are difficult to eliminate non-invasively. The current study quantified in vivo the STA of skin markers on the thigh and shank during cycling, and studied the effects of knee angles and pedal resistance by using integrated 3D fluoroscopy and stereophotogrammetry. Fifteen young healthy adults performed stationary cycling with and without pedal resistance, while the marker data were measured using a motion capture system, and the motions of the femur and tibia/fibula were recorded using a bi-plane fluoroscopy-to-CT registration method. The STAs with respect to crank and knee angles over the pedaling cycle, as well as the within-cycle variations, were obtained and compared between resistance conditions. The thigh markers showed greater STA than the shank ones, the latter varying linearly with adjacent joint angles, the former non-linearly with greater within-cycle variability. Both STA magnitudes and within-cycle variability were significantly affected by pedal resistance (p < 0.05). The STAs appeared to be composed of one component providing the stable and consistent STA patterns and another causing their variations. Mid-segment markers experienced smaller STA ranges than those closer to a joint, but tended to have greater variations primarily associated with pedal resistance and muscle contractions. The current data will be helpful for a better choice of marker positions for data collection, and for developing methods to compensate for both stable and variation components of the STA.  相似文献   

6.
To evaluate the characteristics of stereo-typed movement of the lower limb during treadmill walking, the step length and duration of 200 steps were monitored consecutively and calculated by means of a computerized system, consisting of a position sensor, shoes with foot switches and a minicomputer. Eleven male and 10 female subjects walked at various constant speeds ranging from 60-130 m.min-1. Mean, standard deviation (SD) and coefficient of variation (CV) of the time-distance component at each speed were utilized for the assessment of stereotyped movement. When compared with males, females had a tendency to increase their speed by increasing their cadence. The difference of the walking pattern was specifically related to their height. The SD and CV of the time-distance component at a given speed were significantly greater in females than in males. Regression analyses revealed that in the relationship between the walking speeds and the SDs or CVs of the time-distance component, the significant quadratic equations could be fitted. The speed, at which the SD of step length was minimum, was estimated to be about 90 m.min-1 in both males and females. This was regarded as the free walking speed or as the walking speed resulting from a mechanically efficient step length which suited the subject's body size.  相似文献   

7.
PurposeThe aim of this paper was to identify and synthesise existing evidence on lower limb muscle co-contraction (MCo) during walking in subjects with stroke.MethodsAn electronic literature search on Web of Science, PubMed and B-on was conducted. Studies from 1999 to 2012 which analysed lower limb MCo during walking in subjects with stroke, were included.ResultsEight articles met the inclusion criteria: 3 studied MCo in acute stage of stroke, 3 in the chronic stage and 2 at both stages. Seven were observational and 1 had a pretest–posttest interventional design. The methodological quality was “fair to good” to “high” quality (only 1 study). Different methodologies to assess walking and quantify MCo were used. There is some controversy in MCo results, however subjects with stroke tended towards longer MCo in both lower limbs in both the acute and chronic stages, when compared with healthy controls. A higher level of post-stroke walking ability (speed; level of independence) was correlated with longer thigh MCo in the non-affected limb. One study demonstrated significant improvements in walking ability over time without significant changes in MCo patterns.ConclusionsSubjects with stroke commonly present longer MCo during walking, probably in an attempt to improve walking ability. However, to ensure recommendations for clinical practice, further research with standardized methodologies is needed.  相似文献   

8.
Human walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed. Fourteen healthy young adults walked on a motor driven treadmill without stabilization and with stabilization with four different spring stiffnesses (between 760 and 1820 N m−1) at three walking speeds (70%, 100%, and 130% of preferred speed). Energy cost was calculated from breath-by-breath oxygen consumption. Gait parameters (mean and variability of step width and stride length, and variability of trunk accelerations) were calculated from kinematic data. On average external stabilization led to a decrease in energy cost of 6% (p<0.005) as well as a decrease in step width (24%; p<0.001), step width variability (41%; p<0.001) and variability of medio-lateral trunk acceleration (12.5%; p<0.005). Increasing stabilizer stiffness increased the effects on both energy cost and medio-lateral gait parameters up to a stiffness of 1260 N m−1. Contrary to expectations, the effect of stabilization was independent of walking speed (p=0.111). These results show that active lateral stabilization during walking involves an energetic cost, which is independent of walking speed.  相似文献   

9.
We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.  相似文献   

10.
Slow walking speed and lack of balance control are common impairments post-stroke. While locomotor training often improves walking speed, its influence on dynamic balance is unclear. The goal of this study was to assess the influence of a locomotor training program on dynamic balance in individuals post-stroke during steady-state walking and determine if improvements in walking speed are associated with improved balance control. Kinematic and kinetic data were collected pre- and post-training from seventeen participants who completed a 12-week locomotor training program. Dynamic balance was quantified biomechanically (peak-to-peak range of frontal plane whole-body angular-momentum) and clinically (Berg-Balance-Scale and Dynamic-Gait-Index). To understand the underlying biomechanical mechanisms associated with changes in angular-momentum, foot placement and ground-reaction-forces were quantified. As a group, biomechanical assessments of dynamic balance did not reveal any improvements after locomotor training. However, improved dynamic balance post-training, observed in a sub-group of 10 participants (i.e., Responders), was associated with a narrowed paretic foot placement and higher paretic leg vertical ground-reaction-force impulse during late stance. Dynamic balance was not improved post-training in the remaining seven participants (i.e., Non-responders), who did not alter their foot placement and had an increased reliance on their nonparetic leg during weight-bearing. As a group, increased walking speed was not correlated with improved dynamic balance. However, a higher pre-training walking speed was associated with higher gains in dynamic balance post-training. These findings highlight the importance of the paretic leg weight bearing and mediolateral foot placement in improving frontal plane dynamic balance post-stroke.  相似文献   

11.
The relationship between static foot structure characteristics and knee joint biomechanics during walking, or the biomechanical response to wedged insoles are currently unknown. In this study, 3D foot scanning, dual X-ray absorptiometry and gait analysis methods were used to determine structural parameters of the foot and assess their relation to knee joint loading and biomechanical response to wedged insoles in 30 patients with knee osteoarthritis. In multiple linear regression models, foot fat content, height of the medial longitudinal arch and static hind foot angle were not associated with the magnitude of the knee adduction moment (R2 = 0.24, p = 0.060), knee adduction angular impulse (R2 = 0.21, p = 0.099) or 3D resultant knee moment (R2 = 0.23, p = 0.073) during gait. Furthermore, these foot structure parameters were not associated with the patients’ biomechanical response to medial or lateral wedge footwear insoles (all p < 0.01). These findings suggest that static foot structure is not associated with gait mechanics at the knee, and that static foot structure alone cannot be utilized to predict an individual’s biomechanical response to wedged footwear insoles in patients with knee osteoarthritis.  相似文献   

12.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

13.
Restoring functional gait speed is an important goal for rehabilitation post-stroke. During walking, transferring of one’s body weight between the limbs and maintaining balance stability are necessary for independent functional gait. Although it is documented that individuals post-stroke commonly have difficulties with performing weight transfer onto their paretic limbs, it remains to be determined if these deficits contributed to slower walking speeds. The primary purpose of this study was to compare the weight transfer characteristics between slow and fast post-stroke ambulators. Participants (N = 36) with chronic post-stroke hemiparesis walked at their comfortable and maximal walking speeds on a treadmill. Participants were stratified into 2 groups based on their comfortable walking speeds (≥0.8 m/s or <0.8 m/s). Minimum body center of mass (COM) to center of pressure (COP) distance, weight transfer timing, step width, lateral foot placement relative to the COM, hip moment, peak vertical and anterior ground reaction forces, and changes in walking speed were analyzed. Results showed that slow walkers walked with a delayed and deficient weight transfer to the paretic limb, lower hip abductor moment, and more lateral paretic limb foot placement relative to the COM compared to fast walkers. In addition, propulsive force and walking speed capacity was related to lateral weight transfer ability. These findings demonstrated that deficits in lateral weight transfer and stability could potentially be one of the limiting factors underlying comfortable walking speeds and a determinant of chronic stroke survivors’ ability to increase walking speed.  相似文献   

14.
For studies that aim to assess biological ankle function, calculating ankle joint complex (AJC) power between the calcaneus and shank is recommended over conventional inverse dynamics estimates between a rigid-body foot and shank. However, when designing a new experiment, it remains unclear whether holes should be cut in footwear to permit motion tracking via skin-mounted markers, or whether marker placement locations should be tightly controlled across conditions. Here we provide data to assist researchers in answering these questions. We performed a gait analysis study of walking (0.8, 1.2, 1.6 m·s−1) and running (2.6, 2.8, 3.0 m·s−1) while subjects (N = 10) wore custom-modified footwear, which allowed markers to be placed either on the shoe, or on the skin via cut-out windows in the shoes. First, we compared foot markers affixed to the skin vs. on the same locations on the shoe. Using statistical non-parametric mapping techniques, we discovered that skin vs. shoe markers had no statistically significant effect on net AJC power estimates throughout stance phase, for all walking and running speeds. Second, we compared calcaneal markers in the nominal shoe configuration vs. markers in a nearby location (∼27 mm below) on the shoe. We observed significant differences when marker placement on the shoe was varied, which may be relevant to repeated-measures study designs. The results suggest that when computing AJC power for walking and running, you may want to put down the scissors (i.e., forego cutting holes in your footwear), and instead pick up a Sharpie® (pen) or use a template, to maintain consistent marker placement across trials and conditions.  相似文献   

15.
Muscles actuate movement by generating forces. The forces generated by muscles are highly dependent on their fibre lengths, yet it is difficult to measure the lengths over which muscle fibres operate during movement. We combined experimental measurements of joint angles and muscle activation patterns during walking with a musculoskeletal model that captures the relationships between muscle fibre lengths, joint angles and muscle activations for muscles of the lower limb. We used this musculoskeletal model to produce a simulation of muscle-tendon dynamics during walking and calculated fibre operating lengths (i.e. the length of muscle fibres relative to their optimal fibre length) for 17 lower limb muscles. Our results indicate that when musculotendon compliance is low, the muscle fibre operating length is determined predominantly by the joint angles and muscle moment arms. If musculotendon compliance is high, muscle fibre operating length is more dependent on activation level and force-length-velocity effects. We found that muscles operate on multiple limbs of the force-length curve (i.e. ascending, plateau and descending limbs) during the gait cycle, but are active within a smaller portion of their total operating range.  相似文献   

16.
A three-dimensional musculoskeletal model of the lower limb was developed to study the influence of biarticular muscles on the muscle force distribution and joint loads during walking. A complete walking cycle was recorded for 9 healthy subjects using the standard optoelectronic motion tracking system. Ground contact forces were also measured using a 6-axes force plate. Inverse dynamics was used to compute net joint reactions (forces and torques) in the lower limb. A static optimization method was then used to estimate muscle forces. Two different approaches were used: in the first one named global method, the biarticular muscles exerted a torque on the two joints they spanned at the same time, and in the second one called joint-by-joint method, these biarticular muscles were divided into two mono-articular muscles with geometrical (insertion, origin, via points) and physiological properties remained unchanged. The hip joint load during the gait cycle was then calculated taking into account the effect of muscle contractions. The two approaches resulted in different muscle force repartition: the biarticular muscles were favoured over any set of single-joint muscles with the same physiological function when using the global method. While the two approaches yielded only little difference in the resultant hip load, the examination of muscle power showed that biarticular muscles could produce positive work at one joint and negative work at the other, transferring energy between body segments and thus decreasing the metabolic cost of movement.  相似文献   

17.
Chaos is a central feature of human locomotion and has been suggested to be a window to the control mechanisms of locomotion. In this investigation, we explored how the principles of chaos can be used to control locomotion with a passive dynamic bipedal walking model that has a chaotic gait pattern. Our control scheme was based on the scientific evidence that slight perturbations to the unstable manifolds of points in a chaotic system will promote the transition to new stable behaviors embedded in the rich chaotic attractor. Here we demonstrate that hip joint actuations during the swing phase can provide such perturbations for the control of bifurcations and chaos in a locomotive pattern. Our simulations indicated that systematic alterations of the hip joint actuations resulted in rapid transitions to any stable locomotive pattern available in the chaotic locomotive attractor. Based on these insights, we further explored the benefits of having a chaotic gait with a biologically inspired artificial neural network (ANN) that employed this chaotic control scheme. Remarkably, the ANN was quite robust and capable of selecting a hip joint actuation that rapidly transitioned the passive dynamic bipedal model to a stable gait embedded in the chaotic attractor. Additionally, the ANN was capable of using hip joint actuations to accommodate unstable environments and to overcome unforeseen perturbations. Our simulations provide insight on the advantage of having a chaotic locomotive system and provide evidence as to how chaos can be used as an advantageous control scheme for the nervous system.  相似文献   

18.
There are minimal data describing the between-day repeatability of EMG measurements during running. Furthermore, there are no data characterising the repeatability of surface EMG measurement from the adductor muscles, during running or walking. The purpose of this study was to report on the consistency of EMG measurement for both running and walking across a comprehensive set of lower limb muscles, including adductor magnus, longus and gracilis. Data were collected from 12 lower limb muscles during overground running and walking on two separate days. The coefficient of multiple correlation (CMC) was used to quantify waveform similarity across the two sessions for signals normalised to either maximal voluntary isometric contraction (MVIC) or mean/peak signal magnitude. For running, the data showed good or excellent repeatability (CMC = 0.87–0.96) for all muscles apart from gracilis and biceps femoris using the MVIC method. Similar levels of repeatability were observed for walking. Importantly, using the peak/mean method as an alternative to the MVIC method, resulted in only marginal improvements in repeatability. The proposed protocol facilitated the collection of repeatable EMG data during running and walking and therefore could be used in future studies investigating muscle patterns during gait.  相似文献   

19.
The objectives of this study were to characterize the active and passive contributions to joint kinetics during walking in healthy young and older adults, and assess whether isokinetic ankle strength is associated with ankle power output during walking. Twenty healthy young (18–35 years) and 20 healthy older (65–85 years) adults participated in this study. We measured subject-specific passive-elastic joint moment–angle relationships in the lower extremity and tested maximum isokinetic ankle strength at 30 deg/s. Passive moment–angle relationships were used to estimate active and passive joint moment, power, and work quantities during walking at 80%, 100% and 120% of preferred walking speed. There were no significant differences in walking speed, step length, or cadence between the older and young adults. However, the older adults produced significantly more net positive work at the hip but less net positive work at the ankle at all walking speeds. Passive contributions to hip and ankle work did not significantly differ between groups, inferring that the older adults generated the additional hip work actively. Maximum isokinetic ankle strength was significantly less in the older adults, and correlated with peak positive plantar-flexor power at both the preferred and fast walking speeds. The results of this study suggest that age-related shifts in joint kinetics do not arise as a result of increased passive hip joint stiffness, but seem to be reflected in plantar-flexor weakness.  相似文献   

20.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号