首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.

Introduction

Our lab has developed an effective nutrient-rich solution that facilitates energy production and control of oxidative stress during static cold storage of the intestine; however, the requirement for oncotic agents, such as hydroxyethylstarch (HES), has not been evaluated. This study investigated the effectiveness and requirement for HES in an intraluminal preservation solution during a clinically relevant period of cold storage.

Methods

Rat intestines were procured, including an intravascular flush with University of Wisconsin solution followed by a ‘back table’ intraluminal flush with a nutrient-rich preservation solution containing varying amounts of HES (n = 6 per group): Group 1, 0%; Group 2, 2.5%; Group 3, 5%; Group 4, 10%. Energetics, oxidative stress, and morphology were assessed over a 24 h time-course of cold storage.

Results

Overall, the 5% HES solution, Group 3, demonstrated superior energetic status (ATP and total adenylates) compared to all groups, P < 0.05. Malondialdehyde levels indicated a reduction in oxidative stress in Groups 3 and 4 (P < 0.05). After 12 h, median modified Parks’ grades for Groups 2 and 3 were significantly lower than Groups 1 and 4, P < 0.05.

Conclusion

Our data suggests that when employing an intraluminal preservation solution for static organ storage, oncotic support is a fundamental requirement; 5% HES is optimal.  相似文献   

2.

Introduction

Our lab has developed a novel strategy for intestinal preservation involving the intraluminal delivery of a nutrient-rich preservation solution. The aim of this study was to compare the effectiveness of two impermeant agents for use in our solution: Dextran 70 (D70; Mw = 70 kDa) and Hydroxyethyl starch (HES; Mw = 2200 kDa).

Methods

Rat intestines were procured, including an intravascular flush with University of Wisconsin solution followed by a ‘backtable’ intraluminal flush with: UW solution (group 1, UW), or an amino acid-based nutrient-rich preservation solution (AA solution) containing either 5% D70 (group 2, AA-D70) or HES (group 3, AA-HES). Tissue samples (n = 6) were taken at 2, 4, 8, and 12 h cold storage; histology, energetic, end-product, and oxidative parameters were assessed. In separate groups (n = 4), D70 and HES were fluorescently labeled with fluorescein isothiocyanate (FITC) in order to directly observe mucosal penetration of the starch and dextran.

Results

Over the 12 h storage time-course, direct visualization of the fluorescently labeled D70 showed penetration of the mucosal layer as early as 2 h and progressively continued to do so throughout the 12 h period. In contrast, HES did not cross the mucosal barrier and remained captive within the lumen. As time of storage progressed, grade of injury increased in all groups, however, at 4 and 12 h the AA-HES treated tissues exhibited significantly less injury compared to UW and AA-D70, P < 0.05. AA-HES group showed on moderate villus clefting (median grade 2; P < 0.05) while the AA-D70 group exhibited complete villus denudation (grade 4) and the UW group had extensive injury into the regenerative cryptal regions (grade 6). Metabolic parameters revealed a preferential maintenance of ATP and Energy Charge; increases in lactate, alanine and ammonium supported the involvement of aerobic and anaerobic pathways for energy production.

Conclusion

The results of this study challenge the idea that oncotic support is not a fundamental requirement of static organ storage. Furthermore, our data suggests that HES is an effective oncotic agent for use in our intraluminal nutrient-rich preservation solution, while Dextran 70 is not.  相似文献   

3.

Background  

Creatine synthesis takes place predominately in the kidney and liver via a two-step process involving AGAT (L-arginine:glycine amidinotransferase) and GAMT (guanidinoacetate methyltransferase). Creatine is taken into cells via the creatine transporter (CrT), where it plays an essential role in energy homeostasis, particularly for tissues with high and fluctuating energy demands. Very little is known of the fetal requirement for creatine and how this may change with advancing pregnancy and into the early neonatal period. Using the spiny mouse as a model of human perinatal development, the purpose of the present study was to comprehensively examine the development of the creatine synthesis and transport systems.  相似文献   

4.
《Cryobiology》2011,62(3):254-262
IntroductionOur lab has developed a novel strategy for intestinal preservation involving the intraluminal delivery of a nutrient-rich preservation solution. The aim of this study was to compare the effectiveness of two impermeant agents for use in our solution: Dextran 70 (D70; Mw = 70 kDa) and Hydroxyethyl starch (HES; Mw = 2200 kDa).MethodsRat intestines were procured, including an intravascular flush with University of Wisconsin solution followed by a ‘backtable’ intraluminal flush with: UW solution (group 1, UW), or an amino acid-based nutrient-rich preservation solution (AA solution) containing either 5% D70 (group 2, AA-D70) or HES (group 3, AA-HES). Tissue samples (n = 6) were taken at 2, 4, 8, and 12 h cold storage; histology, energetic, end-product, and oxidative parameters were assessed. In separate groups (n = 4), D70 and HES were fluorescently labeled with fluorescein isothiocyanate (FITC) in order to directly observe mucosal penetration of the starch and dextran.ResultsOver the 12 h storage time-course, direct visualization of the fluorescently labeled D70 showed penetration of the mucosal layer as early as 2 h and progressively continued to do so throughout the 12 h period. In contrast, HES did not cross the mucosal barrier and remained captive within the lumen. As time of storage progressed, grade of injury increased in all groups, however, at 4 and 12 h the AA-HES treated tissues exhibited significantly less injury compared to UW and AA-D70, P < 0.05. AA-HES group showed on moderate villus clefting (median grade 2; P < 0.05) while the AA-D70 group exhibited complete villus denudation (grade 4) and the UW group had extensive injury into the regenerative cryptal regions (grade 6). Metabolic parameters revealed a preferential maintenance of ATP and Energy Charge; increases in lactate, alanine and ammonium supported the involvement of aerobic and anaerobic pathways for energy production.ConclusionThe results of this study challenge the idea that oncotic support is not a fundamental requirement of static organ storage. Furthermore, our data suggests that HES is an effective oncotic agent for use in our intraluminal nutrient-rich preservation solution, while Dextran 70 is not.  相似文献   

5.
INTRODUCTION: Donor nutritional status may be a determinant of small bowel (SB) quality following storage. In this study, we investigated the effect of donor nutritional status and a proven nutrient-rich preservation solution on graft quality following cold storage. METHODS: Rats were fasted (12-14 h) or non-fasted. SB (n=6) was flushed vascularly with modified University of Wisconsin (UW) solution and flushed luminally with UW or an amino acid-rich (AA) solution as follows: Fasted. UWV, none; UWL, UW solution; AAL, AA solution. Non-fasted. UWV, none; UWL, UW solution; AAL, AA solution. Energetics, peroxidation (malondialdehyde; MDA), glutathione and histology were assessed over 24 h at 4 degrees C. RESULTS: Energetics (ATP, ATP/ADP, and energy charge) were significantly higher in AAL (fasted and non-fasted) groups than other groups. However, there were no differences in energetics parameters between fasted and non-fasted animals in all groups. MDA was higher in fasted groups than non-fasted tissues; interestingly, AAL values were up to 10-fold lower than other groups. Higher glutathione levels were detected in non-fasted AAL tissues. Mucosal integrity was markedly superior in luminally treated tissues (UWL and AAL) in fasted and non-fasted states. Most noteably, AAL tissues from fasted animals exhibited grade 2 injury (villus clefting), whereas normal mucosa was observed in non-fasted tissues (grade 0). CONCLUSION: Luminal flushing and a nutrient-rich preservation solution improve energetics, oxidative stress, and mucosal integrity during storage. Poorer donor nutritional status does not affect energetics throughout storage, but causes mucosal injury as a result of increased oxidative stress, even after a brief period of donor fasting.  相似文献   

6.
Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5′flanking sequence and its entire 3′UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5′flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene.  相似文献   

7.

Background

Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P) between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands.

Methods

We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews.

Results

After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5%) on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia.

Conclusion

Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human use, there is a need for human data.  相似文献   

8.
竹子核DNA含量(2C 值)的检测对竹资源的科学研究具有重要意义,而大部分野外采集的样本,通过不同方法保存后,均使用流式细胞仪技术进行核DNA含量检测。本文选取麻竹(Dendrocalamus latiflorus)、筇竹(Chimonobambusa tumidissinoda)和毛花酸竹(Acidosasa purpurea)三种竹子样本,使用硅胶保存法和Sample protector试剂保存法分别保存4d、8d、12d、16d后,采用流式细胞术检测样品2C 值。CV值可以用来反映数据检测结果质量,是对检测结果准确性以及精确性的评价标准,我们通过样品CV值的大小和2C 值的变异率来评价保存方法和保存时间对竹子2C 值检测的影响。方差分析显示,保存时间对CV值具有显著性影响(P < 0001),随着保存时间增大,CV值增大;保存方法对2C 值变异率有显著性影响(P < 0001)。硅胶保存法保存后的样品,测量值比新鲜材料大;Sample protector试剂保存法保存后,测量值比新鲜材料小。因此,随着保存时间的增加,样品CV值增大,引起检测结果质量降低。研究发现,硅胶保存法和Sample protector试剂保存法会影响竹子样本2C 值大小,但2C 值大小的变化小于10%。  相似文献   

9.
Resident and thioglycollate-elicited macrophages maintained in culture for 24 h contain approximately 5 x 10(-16) and 12 x 10(-16) mol of ATP per cell, respectively. During particle ingestion, the levels of ATP in these cells did not change. However, the specific activity of ATP extracted from macrophages labeled with [32P]Pi during phagocytosis was 40% lower than ATP extracted from control cells. These results suggested that macrophages contain a high energy phosphate reservoir, in addition to the ATP pool(s). A search for such a reservoir led to the identification of creatine phosphate in both resident and thioglycollate-elicited macrophages at concentrations that are in 3- to 5-fold-molar excess over ATP. Creatine phosphate levels in phagocytosing resident macrophages decreased by 45%, while creatine phosphate levels in phagocytosing thioglycollate-elicited macrophages did not change. Creatine phosphate turnover was measured in macrophages prelabeled with [14C]creatine. Over 90% of the intracellular label was in the form of creatine phosphate. During phagocytosis, there was a 40% decrease in intracellular [14C]creatine phosphate in both resident and thioglycollate-elicited macrophages. These results indicate that creatine phosphate turns over more rapidly during phagocytosis and replenishes the ATP consumed.  相似文献   

10.
We have compared the influence of two different cold temperatures (below 10°C) for cardiac ischemia by measuring a large variety of hemodynamic and metabolic parameters during ischemia and reflow. Isolated isovolumic rat hearts were arrested with a preservation solution which was developed in our laboratory and then submitted to 5 h of cold storage (4°C, group I; and 7.5°C, group II) in the same solution. After an additional period of 50 min of ischemia at 15°C with intermittent cardioplegic infusion, hearts were reperfused for 60 min at 37°C. Function was assessed during the control period and reflow. High-energy phosphates and intracellular pH were followed by31P magnetic resonance spectroscopy. Analyses of metabolites and enzymes were performed by biochemical assays and HPLC in coronary effluents and in freeze-clamped hearts to assess cellular integrity. The energetic pool was better preserved at 4°C during ischemia (ATP at the end of 4°C ischemia, 59 ± 7% in group I vs 31 ± 5% in group II,P< 0.01) and reflow (P< 0.05) but membrane protection was higher when increasing the temperature to 7.5°C (reduction of creatine kinase leakage, 89 ± 16 IU/min in group I vs 51 ± 5 IU/min in group II,P< 0.05). As a result, functional recovery, represented by the rate pressure product, was higher in hearts preserved at 7.5°C (52 ± 6% recovery in group I vs 77 ± 7% in group II at the end of reflow,P< 0.05). Altogether, cold storage at 7.5°C provides a better protection than storage at 4°C.  相似文献   

11.
In myogenic C2C12 cells, 5 mM creatine increased the incorporation of labeled [35S]methionine into sarcoplasmic (+20%, P < 0.05) and myofibrillar proteins (+50%, P < 0.01). Creatine also promoted the fusion of myoblasts assessed by an increased number of nuclei incorporated within myotubes (+40%, P < 0.001). Expression of myosin heavy chain type II (+1,300%, P < 0.001), troponin T (+65%, P < 0.01), and titin (+40%, P < 0.05) was enhanced by creatine. Mannitol, taurine, and -alanine did not mimic the effect of creatine, ruling out an osmolarity-dependent mechanism. The addition of rapamycin, the inhibitor of mammalian target of rapamycin/70-kDa ribosomal S6 protein kinase (mTOR/p70s6k) pathway, and SB 202190, the inhibitor of p38, completely blocked differentiation in control cells, and creatine did not reverse this inhibition, suggesting that the mTOR/p70s6k and p38 pathways could be potentially involved in the effect induced by creatine on differentiation. Creatine upregulated phosphorylation of protein kinase B (Akt/PKB; +60%, P < 0.001), glycogen synthase kinase-3 (+70%, P < 0.001), and p70s6k (+50%, P < 0.001). Creatine also affected the phosphorylation state of p38 (–50% at 24 h and +70% at 96 h, P < 0.05) as well as the nuclear content of its downstream targets myocyte enhancer factor-2 (–55% at 48 h and +170% at 96 h, P < 0.05) and MyoD (+60%, P < 0.01). In conclusion, this study points out the involvement of the p38 and the Akt/PKB-p70s6k pathways in the enhanced differentiation induced by creatine in C2C12 cells. protein synthesis; insulin-like growth factor; mitogen-activated protein kinase; extracellular signal-regulated kinase 1/2; 70-kDa ribosomal S6 protein kinase  相似文献   

12.
The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature (RT) (25°C) and refrigerated condition (4°C) over a period of 45 days. Creatine concentration was determined using high-performance liquid chromatography (HPLC). Intrinsic dissolution and saturated solubility of creatine, creatine monohydrate, and di-creatine citrate in water were determined and compared. Crystal growth was detected only in the refrigerated samples on the seventh day of storage. Differential Scanning Calorimetry (DSC) and x-ray diffraction (XRD) studies revealed that the crystals formed were of creatine monohydrate. Ninety percent creatine degradation was observed within 45 days for RT samples. However, at refrigerated condition this degradation was 80% within the same time period. The pH of the RT samples also increased from 3.6 to 4.5 during storage. No such increase was observed in the case of refrigerated samples. The intrinsic dissolution rate constants of the compounds decreased in the following order: dicreatine citrate>creatine>creatine monohydrate. In conclusion, di-creatine citrate used in effervescent formulation dissociates to creatine in aqueous solution and eventually crystallizes out as creatine monohydrate. Significant decrease in solubility and effect of pH contribute to this crystallization process.  相似文献   

13.
Creatine kinase enzymes are present in tissues such as muscle and brain to interconvert creatine phosphate and ADP, thus providing a system to interconnect energy production and utilization (Bessman, S. P., and Carpenter, C. L. (1985) Annu. Rev. Biochem. 54, 831-862). Creatine kinase isoenzymes in kidney have received little attention since kidney contains relatively low creatine kinase activity compared with muscle and brain and because there is disagreement regarding the identity of the specific isoforms expressed in kidney. Using a combination of chromatographic and immunological techniques, we have identified two isoforms of creatine kinase in rat kidney supernatants, B creatine kinase, and the non-sarcomeric form of the mitochondrial creatine kinase, which represent 82 and 15%, respectively, of the total creatine kinase activity in this tissue. The identity of the non-muscle form of the mitochondrial creatine kinase was confirmed by N-terminal sequence analysis and compared with recently published cDNA sequences (Haas, R. C., and Strauss, A. W. (1990) J. Biol. Chem. 265, 6921-6927). We prepared multiple antisera specific for each isoform using synthetic peptide immunogens based upon nonhomologous regions from the primary sequence of each creatine kinase isoform. Immunocytochemical results demonstrate that both creatine kinase isoforms are colocalized in the inner stripe of the outer medulla in tubules of the distal nephron. A similar distribution of creatine kinase isoforms was obtained when different layers of the renal cortex and medulla were examined for creatine kinase activity and isozyme content using nondenaturing electrophoresis. In general, the distribution of creatine kinase enzymes in kidney corresponds to the regions of greatest ATP utilization, oxygen consumption, and sodium transport. These results suggest a role for creatine kinase enzymes in the coupling of ion transport and oxidative phosphorylation in the distal nephron of the mammalian kidney.  相似文献   

14.
We investigated the effects of exogenous ghrelin on energy levels and tissue histology in skeletal muscle in experimentally lipopolysaccharide (LPS) induced septic rats. Male Wistar albino rats 200–250 g were separated into four groups; Control, LPS (5 mg/kg), Ghrelin (10 nmol/kg i.v.), and ghrelin+LPS. Gastrocnemius muscle tissue was taken and stained using modified Gomori trichrome (MGT), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) and hematoxylin and eosin. In stained sections, histological score value was calculated according to the intensity and the distribution for MGT, SDH and COX stainings. Creatine, creatine phosphate, adenosine triphosphate (ATP), adenosine monophosphate (AMP) levels, and the ratios of AMP/ATP and CreaP/ATP were investigated using high performance liquid chromatography (HPLC) in muscle tissue. Significances between experimental groups were calculated with an analysis of variance (ANOVA) followed by Tukey’s tests. Myopathic changes were seen in the 50% of rats in the LPS group as rounding of muscle fibers and fiber size variation. In the ghrelin+LPS group, ghrelin treatment was reduced damage in skeletal muscle structure. There was no change in creatine or AMP levels between the groups. Ghrelin treatment significantly increased ATP values (P?<?0.01) and improved tissue histology in septic rats. Ratios of both AMP/ATP and CreaP/ATP were found increased in the septic group, but there were decreaments in both the ghrelin and ghrelin-treated septic groups. Ghrelin could play an important role in energy balance and muscle morphology in skeletal muscle during sepsis.  相似文献   

15.
The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine-lactobionate-raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.  相似文献   

16.
The metabolic burden of creatine synthesis   总被引:1,自引:0,他引:1  
Creatine synthesis is required in adult animals to replace creatine that is spontaneously converted to creatinine and excreted in the urine. Additionally, in growing animals it is necessary to provide creatine to the expanding tissue mass. Creatine synthesis requires three amino acids: glycine, methionine and arginine, and three enzymes: l-arginine:glycine amidinotransferase (AGAT), methionine adenosyltransferase (MAT) and guanidinoacetate methyltransferase (GAMT). The entire glycine molecule is consumed in creatine synthesis but only the methyl and amidino groups, respectively, from methionine and arginine. Creatinine loss averages approximately 2 g (14.6 mmol) for 70 kg males in the 20- to 39-year age group. Creatinine loss is lower in females and in older age groups because of lower muscle mass. Approximately half of this creatine lost to creatinine can be replaced, in omnivorous individuals, by dietary creatine. However, since dietary creatine is only provided in animal products, principally in meat and fish, virtually all of the creatine loss in vegetarians must be replaced via endogenous synthesis. Creatine synthesis does not appear to place a major burden on glycine metabolism in adults since this amino acid is readily synthesized. However, creatine synthesis does account for approximately 40% of all of the labile methyl groups provided by S-adenosylmethionine (SAM) and, as such, places an appreciable burden on the provision of such methyl groups, either from the diet or via de novo methylneogenesis. Creatine synthesis consumes some 20–30% of arginine’s amidino groups, whether provided in the diet or synthesized within the body. Creatine synthesis is, therefore, a quantitatively major pathway in amino acid metabolism and imposes an appreciable burden on the metabolism of methionine and of arginine.  相似文献   

17.

Background  

It is well established that the immature myocardium preferentially utilises non-oxidative energy-generating pathways. It exhibits low energy-transfer capacity via the creatine kinase (CK) shuttle, reflected in phosphocreatine (PCr), total creatine and CK levels that are much lower than those of adult myocardium. The mechanisms leading to gradually increasing energy transfer capacity during maturation are poorly understood. Creatine is not synthesised in the heart, but taken up exclusively by the action of the creatine transporter protein (CrT). To determine whether this transporter is ontogenically regulated, the present study serially examined CrT gene expression pattern, together with creatine uptake kinetics and resulting myocardial creatine levels, in rats over the first 80 days of age.  相似文献   

18.
Creatine action on the activity of creatine kinase (ATP: creatine-phosphotransferase; EC 2.7.3.2) and the content of water-soluble proteins in the developing monolayer culture of chick myoblasts are studied. Creatine at concentrations of 1.9-10- minus 3-3.8-10- minus 3 M is shown to increase reliably the creatine kinase activity by 1,1--2,9 times and to reduct considerably the content of water-soluble proteins. Lower concentrations of creatine (3.8-10- minus 5 M) also increased the creatine kinase activity but did not change the contents of water-soluble proteins. The creatine effect was maximal at the period preceding the termination of tissue cells differentiation. In the course of the combined effect of both actinomycin D (50 mcg/plate) and creatine (3.8-10- minus 3 M) the creatine kinase activity was much higher than that in the presence of actinomycin D alone which considerably reduced the enzyme activity as well as the contents of water-soluble proteins.  相似文献   

19.
The loss of ATP, which is needed for ionic homeostasis, is an early event in the neurotoxicity of glutamate and beta-amyloid (A(beta)). We hypothesize that cells supplemented with the precursor creatine make more phosphocreatine (PCr) and create larger energy reserves with consequent neuroprotection against stressors. In serum-free cultures, glutamate at 0.5-1 mM was toxic to embryonic hippocampal neurons. Creatine at >0.1 mM greatly reduced glutamate toxicity. Creatine (1 mM) could be added as late as 2 h after glutamate to achieve protection at 24 h. In association with neurotoxic protection by creatine during the first 4 h, PCr levels remained constant, and PCr/ATP ratios increased. Morphologically, creatine protected against glutamate-induced dendritic pruning. Toxicity in embryonic neurons exposed to A(beta) (25-35) for 48 h was partially prevented by creatine as well. During the first 6 h of treatment with A(beta) plus creatine, the molar ratio of PCr/ATP in neurons increased from 15 to 60. Neurons from adult rats were also partially protected from a 24-h exposure to A(beta) (25-35) by creatine, but protection was reduced in neurons from old animals. These results suggest that fortified energy reserves are able to protect neurons against important cytotoxic agents. The oral availability of creatine may benefit patients with neurodegenerative diseases.  相似文献   

20.
Intramuscular creatine plays a crucial role in maintaining skeletal muscle energy homeostasis, and its entry into the cell is dependent upon the sodium chloride dependent Creatine Transporter (CrT; Slc6a8). CrT activity is regulated by a number of factors including extra- and intracellular creatine concentrations, hormones, changes in sodium concentration, and kinase activity, however very little is known about the regulation of CrT gene expression. The present study aimed to investigate how Creatine Transporter (CrT) gene expression is regulated in skeletal muscle. Within the first intron of the CrT gene, we identified a conserved sequence that includes the motif recognized by the Estrogen-related receptor α (ERRα), also known as an Estrogen-related receptor response element (ERRE). Additional ERREs confirming to the known consensus sequence were also identified in the region upstream of the promoter. When partnered with peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α) or beta (PGC-1β), ERRα induces the expression of many genes important for cellular bioenergetics. We therefore hypothesized that PGC-1 and ERRα could also regulate CrT gene expression and creatine uptake in skeletal muscle. Here we show that adenoviral overexpression of PGC-1α or PGC-1β in L6 myotubes increased CrT mRNA (2.1 and 1.7-fold, P < 0.0125) and creatine uptake (1.8 and 1.6-fold, P < 0.0125), and this effect was inhibited with co-expression of shRNA for ERRα. Overexpression of a constitutively active ERRα (VP16-ERRα) increased CrT mRNA approximately 8-fold (P < 0.05), resulting in a 2.2-fold (P < 0.05) increase in creatine uptake. Lastly, chromatin immunoprecipitation assays revealed that PGC-1α and ERRα directly interact with the CrT gene and increase CrT gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号