首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islet inflammation severely impairs pancreatic β‐cell function, but the specific mechanisms are still unclear. Interleukin1‐β (IL‐1β), an essential inflammatory factor, exerts a vital role in multiple physio‐pathologic processes, including diabetes. Calcium/calmodulin‐dependent serine protein kinase (CASK) is an important regulator especially in insulin secretion process. This study aims to unveil the function of CASK in IL‐1β–induced insulin secretion dysfunction and the possible mechanism thereof. Islets of Sprague‐Dawley (SD) rats and INS‐1 cells stimulated with IL‐1β were utilized as models of chronic inflammation. Insulin secretion function associated with Cask and DNA methyltransferases (DNMT) expression were assessed. The possible mechanisms of IL‐1β‐induced pancreatic β‐cell dysfunction were also explored. In this study, CASK overexpression effectively improved IL‐1β‐induced islet β‐cells dysfunction, increased insulin secretion. DNA methyltransferases and the level of methylation in the promoter region of Cask were elevated after IL‐1β administration. Methyltransferase inhibitor 5‐Aza‐2’‐deoxycytidine (5‐Aza‐dC) and si‐DNMTs partially up‐regulated CASK expression and reversed potassium stimulated insulin secretion (KSIS) and glucose‐stimulated insulin secretion (GSIS) function under IL‐1β treatment in INS‐1 and rat islets. These results reveal a previously unknown effect of IL‐1β on insulin secretion dysfunction and demonstrate a novel pathway for Cask silencing based on activation of DNA methyltransferases via inducible nitric oxide synthase (iNOS) and modification of gene promoter methylation.  相似文献   

2.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   

3.
ObjectivesThe study aimed to determine whether dental pulp stem cell‐derived exosomes (DPSC‐Exos) exert protective effects against cerebral ischaemia‐reperfusion (I/R) injury and explore its underlying mechanism.Materials and MethodsExosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC‐Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen‐glucose deprivation–reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC‐Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF‐κB p65, HMGB1, IL‐6, IL‐1β and TNF‐α were determined by western blot or enzyme‐linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining.ResultsDPSC‐Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC‐Exos inhibited the I/R‐mediated expression of TLR4, MyD88 and NF‐κB significantly. DPSC‐Exos also reduced the protein expression of IL‐6, IL‐1β and TNF‐α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC‐Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage.ConclusionsDPSC‐Exos can ameliorate I/R‐induced cerebral injury in mice. Its anti‐inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF‐κB pathway.  相似文献   

4.
5.
γδ T cells are a conserved population of lymphocytes that contributes to anti‐tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL‐2 or IL‐15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA‐181a as a key modulator of human γδ T cell differentiation. We observe that miR‐181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR‐181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR‐181a overexpression restricts their levels of NKG2D and TNF‐α. Upon in silico analysis, we identify two miR‐181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR‐181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next‐generation immunotherapies.  相似文献   

6.
This study aimed to explore the function of IFN‐γ+IL‐17+Th17 cells on fibrosis in systemic scleroderma (SSc). Blood and skin samples were collected from 20 SSc cases and 10 healthy individuals. The percentage of IFN‐γ+IL‐17+Th17 cells was detected using flow cytometry. The in vitro induction of IFN‐γ+IL‐17+Th17 cells was performed adopting PHA and rIL‐12. Gene expression was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR), whereas western blot analysis was adopted for protein analysis. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with SSc stages (P = .031), disease duration (P = .016), activity (P = .025) and skin scores (P < .001). In vitro, IFN‐γ+IL‐17+Th17 cells could promote the expressions of α‐SMA and COL1A1, revealing increased fibroblasts’ proliferation and enhanced collagen‐secreting capacity. In addition, IL‐21 expression was significantly increased in co‐culture medium of IFN‐γ+IL‐17+Th17 cells and fibroblasts (P < .001). IL‐21 neutralizer treatment resulted in the down‐regulation of α‐SMA and COL1A1. IL‐21 was confirmed as an effector of IFN‐γ+IL‐17+Th17 cells in fibrosis process. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with disease activity. IFN‐γ+IL‐17+Th17 cells could promote fibroblast proliferation and enhance collagen‐secreting ability via producing IL‐21, thus contributing to fibrosis in SSc.  相似文献   

7.
8.
Considering the significance of lncRNA/miRNA axis in explaining atherosclerosis (AS) progression, this investigation was intended to clarify whether lncRNAs XIST/SNHG5 would regulate AS aetiology by sponging miR‐155, an AS‐promoting molecule. We altogether recruited 367 patients who were examined by coronary angiography, and meanwhile, human coronary artery endothelial cells (HCAECs) were purchased to establish cells models via ox‐LDL treatment. The study results indicated that lowly expressed XIST/SNHG5 and highly expressed miR‐155 were frequently detectable among AS patients who showed severe stenosis and possessed high triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and high‐sensitivity C‐reactive protein (hs‐CRP) levels. Besides, HCAECs treated by ox‐LDL released large amounts of inflammatory cytokines, and their apoptosis rate was also raised. Moreover, expressions of XIST and SNHG5 declined markedly within ox‐LDL‐treated HCAECs, whereas miR‐155 expression significantly ascended. Transfection of pcDNA‐XIST and pcDNA‐SNHG5 both reduced the expression of TNF‐α, IL‐6, IL‐8 and IL‐1β within HCAECs and also dampened the apoptotic tendency of HCAECs. Co‐treatment of pcDNA‐XIST and pcDNA‐SNHG5 produced a larger effect on HCAEC activity than pcDNA‐XIST or pcDNA‐SNHG5 alone. Furthermore, miR‐155, modified by XIST and SNHG5, was capable of reversing the impacts of XIST and SNHG5 on HCAEC activity. Eventually, CARHSP1 was activated by XIST and SNHG5, and its overexpression dwindled impacts of miR‐155 mimic on proliferation and inflammation response of HCAECs. In conclusion, targeting XIST and SNHG5 might be an ideal alternative in delaying AS progression, allowing for their repression of downstream miR‐155.  相似文献   

9.
Fibroblast growth factor 21 (FGF21) is a regulator of glucose and lipid metabolism. It has been widely considered as a promising candidate for the treatment of type 2 diabetes mellitus (T2DM) and other related metabolic disorders. However, lack of structural and dynamic information has limited FGF21‐based drug development. Here, using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of FGF21 and find that its non‐canonical flexible β‐trefoil conformation affects the folding of β2‐β3 hairpin and further overall protein stability. To modulate folding dynamics, we designed an FGF21‐FGF19 chimera, FGF21SS. As expected, FGF21SS shows better thermostability without inducing hepatocyte proliferation. Functional characterization of FGF21SS shows its better insulin sensitivity, reduced inflammation in 3T3‐L1 adipocytes, and lower blood glucose and insulin levels in ob/ob mice compared with wild type. Our dynamics‐based rational design provides a promising approach for FGF21‐based therapeutic development against T2DM.  相似文献   

10.
It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor‐α (TNF‐α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA‐challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA‐induced p65 acetylation, resulting in reduced TNF‐α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS‐challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF‐α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF‐α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA‐induced astrocytic TNF‐α release and ameliorated inflammation‐induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.  相似文献   

11.
GM‐CSF is a potent inflammatory cytokine regulating myeloid cell differentiation, hematopoiesis, and various other functions. It is functionally associated with a number of inflammatory pathologies including rheumatoid arthritis and inflammatory bowel disease. GM‐CSF has been found to promote NLRP3‐dependent IL‐1β secretion, which may have a significant role in driving inflammatory pathologies. However, the molecular mechanisms remain unknown. Here, we show that GM‐CSF induces IL‐1β secretion through a ROS‐dependent pathway. TNF is required for reactive oxygen species (ROS) generation that strikingly does not promote NLRP3 activation, but instead drives ubiquitylation of IL‐1β, promoting its cleavage through basal NRLP3 activity. GM‐CSF regulates this pathway through suppression of antioxidant responses via preventing upregulation of NRF2. Thus, the pro‐inflammatory effect of GM‐CSF on IL‐1β is through suppression of antioxidant responses, which leads to ubiquitylation of IL‐1β and enhanced processing. This study highlights the role of metabolic regulation of inflammatory signaling and reveals a novel mechanism for GM‐CSF to promote inflammation.  相似文献   

12.
It has been recently that particulate matter (PM) exposure increases the risk and exacerbation of allergic asthma. However, the underlying mechanisms and factors associated with increased allergic responses remain elusive. We evaluated IL‐23 and IL‐23R (receptor) expression, as well as changes in the asthmatic phenotype in mice administered PM and a low dose of house dust mite (HDM). Next, changes in the phenotype and immune responses were evaluated after intranasal administration of anti‐IL‐23 antibody during co‐exposure to PM and low‐dose HDM. We also performed in vitro experiments to investigate the effect of IL‐23. IL‐23 expression was significantly increased in Epcam+CD45− and CD11c+ cells, while that of IL‐23R was increased in Epcam+CD45− cells only in mice administered PM and low‐dose HDM. Administration of anti‐IL‐23 antibody led to decreased airway hyperresponsiveness, eosinophils, and activation of dendritic cells, reduced populations of Th2 Th17, ILC2, the level of IL‐33 and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Inhibition of IL‐23 in PM and low‐dose HDM stimulated airway epithelial cell line resulted in decreased IL‐33, GM‐CSF and affected ILC2 and the activation of BMDCs. PM augmented the phenotypes and immunologic responses of asthma even at low doses of HDM. Interestingly, IL‐23 affected immunological changes in airway epithelial cells.  相似文献   

13.
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.  相似文献   

14.
Hypoxia/reoxygenation (H/R)‐induced myocardial cell injury is the main cause of acute myocardial infarction (AMI). Many proofs show that circular RNA plays an important role in the development of AMI. The purpose of this study was to investigate the role of circSAMD4A in H/R‐induced myocardial injury. The levels of circular SAMD4A (circSAMD4A) were detected in the heart tissues of AMI mice and H/R‐induced H9C2 cells, and the circSAMD4A was suppressed in AMI mice and H/R‐induced H9C2 cells to investigate its’ function in AMI. The levels of circSAMD4A and miR‐138‐5p were detected by real‐time quantitative PCR, and MTT assay was used to detect cell viability. TUNEL analysis and Annexin V‐FITC were used to determine apoptosis. The expression of Bcl‐2 and Bax proteins was detected by Western blot. IL‐1β, TNF‐α and IL‐6 were detected by ELISA kits. The study found that the levels of circSAMD4A were up‐regulated after H/R induction and inhibition of circSAMD4A expression would reduce the H/R‐induced apoptosis and inflammation. MiR‐138‐5p was down‐regulated in H/R‐induced H9C2 cells. circSAMD4A was a targeted regulator of miR‐138‐5p. CircSAMD4A inhibited the expression of miR‐138‐5p to promote H/R‐induced myocardial cell injury in vitro and vivo. In conclusion, CircSAMD4A can sponge miR‐138‐5p to promote H/R‐induced apoptosis and inflammatory response.  相似文献   

15.
Preterm birth is a major contributor to neonatal mortality and morbidity. Infection results in elevation of inflammation‐related cytokines followed by infiltration of immune cells into gestational tissue. CXCL12 levels are elevated in preterm birth indicating it may have a role in preterm labour (PTL); however, the pathophysiological correlations between CXCL12/CXCR4 signalling and premature labour are poorly understood. In this study, PTL was induced using lipopolysaccharide (LPS) in a murine model. LPS induced CXCL12 RNA and protein levels significantly and specifically in myometrium compared with controls (3‐fold and 3.5‐fold respectively). Highest levels were found just before the start of labour. LPS also enhanced the infiltration of neutrophils, macrophages and T cells, and induced macrophage M1 polarization. In vitro studies showed that condition medium from LPS‐treated primary smooth muscle cells (SMC) induced macrophage migration, M1 polarization and upregulated inflammation‐related cytokines such as interleukin (IL)‐1, IL‐6 and tumor necrosis factor alpha (TNF‐α). AMD3100 treatment in pregnant mice led to a significant decrease in the rate of PTL (70%), prolonged pregnancy duration and suppressed macrophage infiltration into gestation tissue by 2.5‐fold. Further, in‐vitro treatment of SMC by AMD3100 suppressed the macrophage migration, decreased polarization and downregulated IL‐1, IL‐6 and TNF‐α expression. LPS treatment in pregnant mice induced PTL by increasing myometrial CXCL12, which recruits immune cells that in turn produce inflammation‐related cytokines. These effects stimulated by LPS were completely reversed by AMD3100 through blocking of CXCL12/CXCR4 signalling. Thus, the CXCL12/CXCR4 axis presents an excellent target for preventing infection and inflammation‐related PTL.  相似文献   

16.
17.
Osteoarthritis (OA) is a whole‐joint disease characterized by synovial inflammation and cartilage degeneration. However, the relationship between synovial inflammation and cartilage degeneration remains unclear. The modified Hulth''s method was adopted to establish a knee OA (KOA) rabbit model. Synovial tissue was collected after 8 weeks, and synovial tissue‐derived extracellular vesicles (ST‐EVs) were extracted by filtration combined with size exclusion chromatography (SECF), followed by identification through transmission electron microscopy (TEM), nanoparticle tracer analysis (NTA) and Western blot (WB). The collagenase digestion method was used to extract normal rabbit chondrocytes, which were then treated with the SF‐EVs to observe the effect and mechanism of SF‐EVs on chondrocytes. The morphology, particle size and labelled protein marker detection confirmed that SECF successfully extract ST‐EVs. The ST‐EVs in the KOA state significantly inhibited chondrocyte proliferation and promoted chondrocytes apoptosis. Moreover, the ST‐EVs also promoted the expression of pro‐inflammatory cytokines (IL‐1β, IL‐6, TNF‐α and COX‐2) and cartilage degradation‐related enzymes (MMP13, MMP9 and ADAMTS5) in the chondrocytes. Mechanistically, the ST‐EVs significantly promoted the activation of NF‐κB signalling pathway in chondrocytes. Inhibition the activation of the NF‐κB signalling pathway significantly rescued the expression of inflammatory cytokines and cartilage degradation‐related enzymes in the ST‐EVs–induced chondrocytes. In conclusion, the ST‐EVs promote chondrocytes inflammation and degradation by activating the NF‐κB signalling pathway, providing novel insights into the occurrence and development of OA.  相似文献   

18.
19.
The mechanism underlying induction of periprosthetic osteolysis by wear particles remains unclear. In this study, cultured MLO‐Y4 osteocytic cells were exposed to different concentrations of titanium (Ti) particles. The results showed that Ti particles increased expression of the osteocytic marker SOST/sclerostin in a dose‐dependent manner, accelerated apoptosis of MLO‐Y4 cells, increased the expression of IL‐6, TNF‐α and connexin 43. SOST silence alleviated the increase of MLO‐Y4 cells apoptosis, decreased the expression of IL‐6, TNF‐α and connexin 43 caused by Ti particles. The different co‐culture systems of MLO‐Y4 cells with MC3T3‐E1 osteoblastic cells were further used to observe the effects of osteocytic cells'' changes induced by Ti particles on osteoblastic cells. MLO‐Y4 cells treated with Ti particles inhibited dramatically differentiation of MC3T3‐E1 cells mostly through direct cell‐to‐cell contact. SOST silence attenuated the inhibition effects of Ti‐induced MLO‐Y4 on MC3T3‐E1 osteoblastic differentiation, which ALP level and mineralization of MC3T3‐E1 cells increased and the expression of ALP, OCN and Runx2 increased compared to the Ti‐treated group. Taken together, Ti particles had negative effects on MLO‐Y4 cells and the impact of Ti particles on osteocytic cells was extensive, which may further inhibit osteoblastic differentiation mostly through intercellular contact directly. SOST/sclerostin plays an important role in the process of mutual cell interaction. These findings may help to understand the effect of osteocytes in wear particle‐induced osteolysis.  相似文献   

20.
The calcium‐sensing receptor (CaSR) is involved in the pathophysiology of many cardiovascular diseases, including myocardial infarction (MI) and hypertension. The role of Calhex231, a specific inhibitor of CaSR, in myocardial fibrosis following MI is still unclear. Using Wistar rats, we investigated whether Calhex231 ameliorates myocardial fibrosis through the autophagy‐NLRP3 inflammasome pathway in macrophages post myocardial infarction (MI). The rats were randomly divided into sham, MI and MI + Calhex231 groups. Compared with the sham rats, the MI rats consistently developed severe cardiac function, myocardial fibrosis and infiltration of inflammatory cells including macrophages. Moreover, inflammatory pathway including activation of NLRP3 inflammasome, IL‐1β and autophagy was significantly up‐regulated in myocardial tissue, infiltrated cardiac macrophages and peritoneal macrophages of the MI rats. These impacts were reversed by Calhex231. In vitro, studies revealed that calindol and rapamycin exacerbated MI‐induced autophagy and NLRP3 inflammasome activation in peritoneal macrophages. Calhex231 and 3‐Methyladenine (a specific inhibitor of autophagy) attenuated both autophagy and NLRP3 inflammasome activation; however, the caspase‐1 inhibitor Z‐YVAD‐FMK did not. Our study indicated that Calhex231 improved cardiac function and ameliorated myocardial fibrosis post MI, likely via the inhibition of autophagy‐mediated NLRP3 inflammasome activation; this provides a new therapeutic target for ventricular remodelling‐related cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号