首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caprine preantral follicles within ovarian fragments were exposed to or vitrified in the presence of sucrose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), or various combinations thereof. The fragments were cryopreserved by using either a conventional (CV) or a solid-surface vitrification (SSV) protocol, and the cryoprotectants were removed by equilibrating vitrified ovarian fragments in “warming solution” consisting of minimum essential medium and heat-inactivated fetal calf serum (MEM+) followed by washes in MEM+ with or without sucrose. Histological analysis of follicle integrity showed that the percentages of normal follicles in ovarian fragments vitrified in sucrose mixed with EG and/or DMSO (CV method) or mixed with EG or DMSO (SSV method) followed by washes in MEM+ plus sucrose were similar to those of controls (ovarian fragments fixed without previous vitrification). Unlike for MEM+ (supplemented or unsupplemented by sucrose) and DMSO followed by washes in the absence of sucrose, the percentages of normal follicles found after exposure to cryoprotectant did not significantly differ from that found after vitrification, indicating that follicular degeneration was attributable to a toxic effect of cryoprotectants and not to the vitrification procedure. The viability of preantral follicles after the CV and SSV procedures was investigated by using calcein-AM and the ethidium-homodimer as “live” and “dead” markers, respectively. In both tested vitrification procedures, the highest percentages of viable follicles were observed when a mixture of sucrose and EG (70.3% for CV and 72.4% for SSV) was used. Preantral follicles were also vitrified (either by CV or SSV) in sucrose and EG and then cultured for 24 h, after which their viability was compared with that of cultured fresh and uncultured vitrified follicles. The viability of these follicles was maintained after SSV, but not after CV. Thus, the viability of caprine preantral follicles can be best preserved after SSV in a mixture of sucrose and EG, followed by washes in medium containing sucrose.CAPES/Brazil supported this work. Regiane Rodrigues dos Santos is a recipient of a grant from CAPES/Brazil.  相似文献   

2.
The objective was to compare the efficiency of various vitrification techniques and solutions for preserving morphology and viability of preantral caprine follicles enclosed in ovarian tissue. Fragments of ovarian cortex were cryopreserved by conventional vitrification (CV) in French straws, vitrification in macrotubes (MTV), or solid-surface vitrification (SSV). Six solutions containing 6 M ethylene glycol, with or without sucrose (SUC; 0.25 or 0.50 M) and/or 10% fetal calf serum (FCS) were tested (Experiment I). After 1 wk, samples were warmed and preantral follicles were examined histologically. To evaluate follicular viability (Experiment II), ovarian fragments were vitrified with the three techniques listed above, in a solution containing 0.25 M SUC and 10% FCS. After warming, follicles were assessed by the trypan blue dye exclusion test. In Experiment III, preantral follicles enclosed in ovarian tissue were vitrified using the protocol which yielded the highest percentage of viable preantral follicles (SSV with 0.25 M SUC and 10% SFB). After warming, the preantral follicles enclosed in ovarian tissue were cultured in vitro and then, were analyzed by histology and fluorescence microscopy (calcein-AM and ethidium homodimer-1). Every vitrification protocol significantly reduced the percentages of morphologically normal follicles relative to the control (88.0%); however, the addition of 0.25 M SUC and 10% FCS to the vitrification solution improved preservation of follicular morphology (67.4, 67.4, and 72.0% for CV, MTV, and SSV, respectively). Although follicular viability after SSV (80.7%) did not differ from that in fresh (non-vitrified) ovarian tissues (88.0%), after in vitro culture, percentages of viable follicles were significantly reduced (70.0%). Percentages of morphologically normal follicles after in vitro culture of vitrified ovarian tissue were similar (76.0%) to those in ovarian cortex fragments cultured without previous vitrification (83.2%). In conclusion, SSV using a solution containing 0.25 M SUC and 10% FCS, was the most efficient method for vitrifying caprine ovarian tissue.  相似文献   

3.
Sperm vitrification is a low cost and simple technique that does not require special equipment and may represent an attractive alternative to the costly and time consuming conventional dog spermatozoa cryopreservation techniques. The objective of this study was to evaluate different cryoprotectants and warming temperatures on the vitrification of dog spermatozoa. Pooled semen samples from 10 beagle dogs were vitrified with four extenders, based on Tris, citric acid and glucose, 20% egg yolk (TCG-20% EY) and different combinations of sucrose and/or trehalose: 250 mM sucrose; 250 mM trehalose; 125 mM sucrose + 125 mM trehalose; 250 mM sucrose + 250 mM trehalose. Samples were vitrified by dropping 50 μL of sperm suspension directly into liquid nitrogen. After vitrification, warming was done either fast (at 65 °C for 2–5 s) or slow (at 37 °C for one minute). Motility was assayed using a computer-aided sperm analysis (CASA) system; membrane integrity and acrosomal status were analyzed by fluorescence microscopy. For comparison, samples were also conventionally frozen in liquid nitrogen vapor using a TCG-20% egg yolk extender plus 5% glycerol. Frozen straws were thawed in a water bath at 37 °C for 30 s. Poorer motility results (P < 0.05) but similar viability were obtained when vitrification was performed, compared to conventional freezing (P > 0.05). When vitrification was used, cryoprotectants containing either 250 mM sucrose or 250 mM trehalose and warmed at 37 °C returned the best sperm quality variables.  相似文献   

4.
The aim of the present study was to perform a qualitative and quantitative analysis of the effect of different sucrose concentrations combined with ethylene glycol in the preservation of vitrified porcine preantral follicles. Fragments of ovarian cortex were vitrified in cryotubes containing 200 μl of the vitrification solution (30% Ethylene Glycol; 20% Fetal Bovine Serum; 0 M–0.25 M – 0.75 M or 1 M sucrose) and stored in liquid nitrogen for a week. Histological analysis showed that after vitrification the number of normal follicles decreased compared to the fresh tissue (control). The percentage of normal primordial follicles was sucrose dose dependent. The percentage of normal primary follicles was similar in 0 M or 0.25 M sucrose, while higher concentrations (0.75 M and 1 M) increased significantly the percentage of abnormal follicles (p < 0.05). Morphometric analysis showed a statistically significant reduction in the total area of primordial follicles with 0.75 M sucrose and a significant increase in the cytoplasmic area of primordial follicles with 0 M sucrose (p < 0.05). The qualitative and the quantitative analysis appear to be a complementary tool when choosing a vitrification protocol. For our cryopreservation system - vitrification of ovarian cortex slices in cryotubes-the best vitrification medium was TCM 199-Hepes with 30% de ethylene glycol, 20% of Fetal Bovine Serum and 0 or 0.25 M sucrose. The present study shows that the use of high sucrose concentrations in the vitrification solution has a deleterious effect on the preservation of porcine preantral follicles contained in ovarian tissue. Consequently, its use at 0.75 M or 1 M wouldn't be recommended.  相似文献   

5.
This study aimed to evaluate different vitrification methods using distinct cryoprotectants (CPAs) for the preservation of collared peccary ovarian preantral follicles (PFs). Ovarian pairs from six females were fragmented and three fragments (fresh control group) were immediately evaluated for morphology, viability, cell proliferation capacity (assessed by quantifying the number of argyrophilic nucleolus organizer regions – NORs), and apoptosis (by the identification of activated caspase-3 expression). The remaining 18 fragments were vitrified using the solid surface vitrification (SSV) method or the ovarian tissue cryosystem (OTC) with 3 M ethylene glycol (EG), 3 M dimethylsulfoxide (DMSO), or a combination of the two (1.5 M EG/1.5 M DMSO). After two weeks, samples were rewarmed and evaluated as described previously. The OTC with any of the CPAs provided a similar conservation of morphologically normal PFs as the fresh control group (75.6 ± 8.6%); however, the SSV was only efficient with DMSO alone (63.9 ± 7.6%). Regarding the viability or cell proliferation, all tested groups provided post rewarming values similar to those observed for the fresh control group, 84.0 ± 2.9% viable cells with 2.0 ± 0.2 NORs. Related to apoptosis analysis, only the OTC with EG (46.7%) and the SSV method with EG (43.4%) or the combination of EG and DMSO (33.4%) provided similar values to those found for the fresh control group (36.7%). Our findings indicate the utilization of a closed system, the OTC, with 3 M EG as the CPA for the vitrification of collared peccary ovarian tissue.  相似文献   

6.
Survival of oocytes recovered from vitrified sheep ovarian tissues   总被引:11,自引:0,他引:11  
The objective of this work was to develop an effective vitrification technique for cryopreserving oocytes in sheep ovarian tissues. Ovaries were surgically recovered from 15 pubertal ewes and the ovarian cortex was cut into sections. Ovarian tissues were placed in equilibration medium consisting of 4% (v/v) ethylene glycol (EG) and 20% (v/v) FBS in TCM-199 on ice for 30 min and transferred to vitrification solution (35% EG, 5% polyvinylpyrrolidone, 0.4M trehalose and 20% FBS in TCM-199) for 5 min. Ovarian tissues were vitrified by dropping the tissue on the surface of a steel cube cooled by liquid nitrogen. Cumulus-enclosed oocyte complexes (COC) were also collected and vitrified following the procedure used for ovarian tissues. After 2-3 weeks of storage in liquid nitrogen, ovarian tissues and COC were thawed at 37 degrees C in 0.3M trehalose and COC in ovarian tissues were mechanically and enzymatically isolated. Vitrified COC and freshly collected COC were washed twice in maturation medium (TCM-199 supplemented with 0.255 mM pyruvate and 10% heat-treated estrus cow serum) and cultured in 50 microl drops of maturation medium under paraffin oil for 23-25h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. After culture, cumulus cells were removed by hyaluronidase treatment and vortexing and oocytes were fixed and stained. No significant differences were observed between vitrified oocytes, oocytes recovered from vitrified ovarian tissues and non-vitrified control oocytes in the percentage of oocytes with acceptable staining per total number of oocytes fixed or with visible chromatin per total number of oocytes with acceptable staining. However, fewer (P<0.05) oocytes obtained from vitrified ovarian tissues (70%) reached metaphase II compared to vitrified oocytes (88%) and non-vitrified control oocytes (90%). In contrast, when oocytes with at least 3-5 layers of cumulus cells were considered from each of the three groups, no differences (P>0.05) were observed due to treatment in the percentages of oocytes developing to metaphase II. These results demonstrate that sheep oocytes can be successfully cryopreserved by vitrification of ovarian tissues and exhibit in vitro maturation rates similar to that of vitrified and non-vitrified oocytes.  相似文献   

7.
Data of cryoprotectant-free vitrification of human testicular and epididymal spermatozoa are limited. The aim of this investigation was to compare two aseptic technologies of TESE (testicular) and MESA (epididymal) spermatozoa cryopreservation: standard conventional freezing with the use of cryoprotectants and cryoprotectant-free vitrification. Sperm motility, capacitation-like changes, acrosome reaction and the mitochondrial membrane potential of frozen (5% glycerol, −10 °C/min) and vitrified (Human Tubal Fluid + 1% Human Serum Albumin+0.25 M sucrose, plunging into liquid nitrogen of capillaries with spermatozoa isolated from liquid nitrogen (aseptic method) were compared. The quality of the cryoprotectant-free vitrified MESA- and TESE-spermatozoa was higher than that of spermatozoa conventionally frozen with permeable cryoprotectants. Intracellular sperm injection (ICSI) was performed with vitrified spermatozoa. We report the birth of three healthy babies from two women following ICSI with motile MESA- and TESE-spermatozoa vitrified without cryoprotectants. This is the first report of full-term pregnancies and babies born after ICSI with epididymal and testicular spermatozoa vitrified without cryoprotectants. In conclusion, cryoprotectant-free vitrification can be successfully applied for the cryopreservation of motile TESE- and MESA-spermatozoa.  相似文献   

8.
9.
The objective was to evaluate the effect of various vitrification conditions on the morphology of bovine secondary and primordial follicles, and to use xenografting to confirm their developmental ability. Secondary follicles were placed in vitrification solution containing 15% (v:v) ethylene glycol (EG), 15% (v:v) dimethyl sulfoxide (DMSO), 20% (v:v) fetal calf serum (FCS), and 0, 0.25, or 0.5 M sucrose at room temperature for 1 or 30 min, or at 4 °C for 30 min before being plunged into liquid nitrogen (LN2). Ovarian tissues with primordial follicles were equilibrated in a solution containing 7.5% EG, 7.5% DMSO, and 20% FCS for 5 or 15 min, and then treated with a vitrification solution (15% EG, 15% DMSO, and 20% FCS) containing 0 or 0.5 M sucrose at room temperature for 1 min, and then plunged into LN2. One week later, follicles and tissues were warmed, and morphology assessed histologically. Secondary follicles vitrified in sucrose-free solution had more oocytes with shrinkage of the nucleus and abnormal cytoplasm relative to those vitrified in sucrose-containing solution. When primordial follicles were equilibrated for 5 min and vitrified in sucrose-free solution, the percentage of morphologically normal primordial follicles was higher than in the other groups (P < 0.05). After 4 wk and 6 mo of xenografting of vitrified-warmed secondary and primordial follicles, respectively, in SCID mice, follicles developed to the antral stage and oocytes grew. In conclusion, bovine secondary follicles were successfully cryopreserved in sucrose-containing vitrification solutions and maintained their ability to develop to the antral stage and grow oocytes, whereas primordial follicles vitrified in sucrose-free solution maintained their morphology and developed to the antral stage, with oocyte growth.  相似文献   

10.
Ovaries from 8 to 10-week-old N MRI mice were vitrified using RPMI solution containing 30% (W/V) ficoll 70, 0.5 M sucrose, 10.7% (V/V) acetamide and 40% (V/V) ethylene glycol (EGFS40%), and were stored in liquid nitrogen. After warming at 25 degrees C in 1 M sucrose solution and equilibration with RPMI medium, the vitrified and fresh ovarian tissues were autografted intraperitoneally. After one and two estrus cycles the animals were sacrificed and the recovered grafts were examined histologically. Five days after transplantation the vitrified ovaries they were invaded by fat and fibrous cells and the large preantral and antral follicles were degenerated. At 11 days postgrafting the stroma was devoid of necrotic cells and contained normal primordial and primary follicles, suggesting that the vitrification is a simple, useful and efficient procedure for cryopreservation of murine ovarian tissues.  相似文献   

11.
Loss of biodiversity among amphibians is a current concern. Our hypothesis is that the embryos of amphibian species at risk of extinction could be cryopreserved by vitrification, using methods which have proved successful with fish oocyte. To test this hypothesis, samples of four cryoprotectants - methanol (MeOH), dimethyl sulphoxide (Me2SO), propylene glycol (PG) and polyethylene glycol (PEG), some singly, some in combination, were plunged in liquid nitrogen for 5 min to find the best solution for vitrification. To find the least toxic of these solutions, blastulae and stage G17 embryos of Bufotes Viridis, a typical amphibian, were exposed to solutions at different concentrations (0.5–10 M) for different lengths of time (15–30 min), with and without their normal protective jelly coats. In each case the number of survivors, which reached stage G25 was counted. Finally a series of embryos was vitrified in liquid nitrogen using the most efficient and least toxic cryoprotectants.Propylene glycol had the best vitrification characteristics, but MeOH vitrified at higher concentrations. The optimum regime, with the least toxic ctyoprotectants, consisted of 1M Me2SO for 15 min and a combination of 15% PEG(w/v) + 3M PG + 2M Me2SO for 3 min, with the jelly coat intact, followed by vitrification. This gave a survival percentage of 87.6% immediately after vitrification. Methods designed for cryopreservation of fish embryos make a good starting point for cryopreservation of the embryos of amphibian.  相似文献   

12.
The aim of this study was to evaluate the association of equilibration manners with warming procedures, and the different permeating cryoprotectants (pCPAs) effects under two temperatures, in terms of survival, maturation and subsequent parthenogenetic development of porcine immature oocytes after Cryotop vitrification. In Experiment 1, oocytes were equilibrated by exposure to 5% (v/v) ethylene glycol (EG) for 10 min (EM1) or stepwise to 7.5% (v/v) and 15% (v/v) EG for 2.5 min respectively (EM2). Warming procedures were performed in 1.0 M sucrose for 1 min, then in 0.5 and 0.25 M sucrose for 2.5 min respectively (WP1), or in 0.5, 0.25 and 0.125 M sucrose each step for 2 min (WP2), or in 0.25, 0.125 and 0.063 M sucrose each step for 2 min (WP3). After 2 h of warming, the survival rate of oocytes treated by EM1 and WP1 was significantly higher (P < 0.05) than that of the other groups. Moreover, a similar proportion of survival and nuclear maturation in all vitrified groups was obtained after completion of the IVM. No significant difference in blastocyst development was observed among vitrified groups except the group treated by EM2 and WP3. In Experiment 2, oocytes were vitrified by using EG alone, EG combined with dimethyl sulphoxide (EG + DMSO) or propylene glycol (EG + PROH) as pCPAs under 25 °C and 39 °C. The percentages of cryosurvival and nuclear maturation were similar in all vitrified groups. Under 25 °C, the embryo development and total cell numbers of blastocysts were not significantly different among EG, EG + DMSO and EG + PROH groups. However, the application of EG + PROH at 39 °C resulted in significantly decreased both cleavage and blastocyst formation rates. In conclusion, our data showed that equilibration manner and warming procedure affect the cryosurvival of porcine immature oocytes, and the combination of pCPAs cannot give a better cryopreservation outcome whether 25 °C or 39 °C. Notably, the Cryotop vitrification accompanied by our modified strategy for porcine immature oocytes could achieve high survival and respectable blastocyst production.  相似文献   

13.
We evaluated the meiotic and developmental competence of GV-stage equine oocytes vitrified under different conditions. In a preliminary study, using dimethyl sulfoxide (D), ethylene glycol (EG) and sucrose (S) as cryoprotectants, the maturation rate was higher for cumulus-oocyte complexes (COCs) held overnight before vitrification (37%) than for those vitrified immediately (14%; P < 0.05). Thereafter, all COCs were held overnight before vitrification. In Experiment 1 we compared 1 min (1m) and 4 min (4m) exposure to vitrification and warming solutions; oocytes that subsequently matured were fertilized by ICSI. The maturation rate was similar between timing groups (29–36%), but was significantly lower than that for controls (73%). The 1m treatment yielded one blastocyst (11%), vs. 19% in controls. In Experiment 2, propylene glycol (PG) and trehalose (T) were also used. We compared two base solutions: M199 with 10% FBS (M199+), and 100% FBS; three cryoprotectant combinations: D-EG-S; PG-EG-S; and PG-EG-T; and two timings in vitrification solution: ∼30 s (30s) and 1 min (1m). The most effective treatment (FBS/PG-EG-T/30s) yielded 42% maturation, 80% cleavage and 1 blastocyst (10%), vs. 49%, 93% and 29%, respectively for controls (P > 0.1). In Experiment 3, we evaluated the toxicity of the M199/D-EG-S/1m and FBS/PG-EG-T/30s treatments, without actual vitrification. These treatments did not affect maturation but both significantly reduced blastocyst development (0% and 0%, vs. 21% for controls). This represents the second report of blastocyst development after vitrification of GV-stage equine oocytes, and presents the highest developmental competence yet achieved; however, more work is needed to increase the efficiency of this system.  相似文献   

14.
The objective was to cryopreserve porcine primordial follicles by vitrification and to assess the development of these follicles in xenografts. Ovarian tissues containing primordial follicles were collected from neonatal (15-d-old) piglets. They were vitrified in modified tissue culture medium (TCM)-199 containing 15% (v/v) ethylene glycol, 15% (v/v) dimethylsulfoxide, 20% (v/v) fetal calf serum, and 0, 0.25, or 0.5 M sucrose. After 1 wk of storage in liquid nitrogen (LN2), the tissues were warmed, and the morphology of follicles and oocytes was examined histologically. After vitrification in sucrose-free medium, there were 50 ± 2 (mean ± SEM; n = 10) follicles per tissue, in contrast with 108 ± 10 (n = 10) in fresh tissues. Losses were attributed to puncturing oocytes during the vitrification-warming process, as oocytes were apparently normal after treatment of the sucrose-free vitrification solution without plunging into LN2. When tissues were vitrified in sucrose-supplemented medium, loss of oocytes decreased (P < 0.05). However, the number of abnormal oocytes having nuclear shrinkage was increased (P < 0.05) by the addition of 0.5 M sucrose; this occurred in a small number of oocytes treated with sucrose-supplemented vitrification solutions without vitrification. After 2 mo of xenografting of vitrified-warmed tissues in SCID (severe combined immune deficiency) mice, primordial follicles developed to the secondary stage (accompanied by oocyte growth), whereas there was development to the antral stage in xenografts of fresh tissues. In conclusion, primordial follicles from neonatal pigs maintained their developmental ability after vitrification and warming, although their developmental rate was slower than that of the fresh control in xenografts.  相似文献   

15.
《Cryobiology》2016,72(3):367-373
Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.  相似文献   

16.
Grafting of cryopreserved testicular tissue is a promising tool for fertility and testicular function preservation in endangered species, mutant animals, or cancer patients for future use. In this study, we aimed to improve the whole neonatal mouse testicular tissue cryopreservation protocols by comparing cryosurvival, spermatogenesis, and androgen production of grafted testicular tissue after cryopreservation with three different vitrification protocols and an automated computed controlled-rate freezing. Whole neonatal mouse testes were vitrified with various vitrification solutions (V1) 40% EG + 18% Ficoll + 0.35 M Sucrose, (V2) DAP 213 (2 M DMSO + 1 M Acetamid + 3 M PG), or (V3) 15% EG + 15% PG + 0.5 M Sucrose (total solute concentration V1:74.34%, V2:44.0%, and V3:49.22% wt/vol). Alternatively, neonatal testicular tissue was also frozen in 0.7 M DMSO +5% fetal bovine serum using controlled-rate freezing and compared to fresh grafted testicular tissue, sham grafted controls, and the vitrification protocol groups. Fresh (n = 4) and frozen-thawed (n = 4) testes tissues were grafted onto the flank of castrated male NCr Nude recipient mouse. The grafts were harvested after three months. Fresh or frozen-thawed grafts with controlled-rate freezing had the highest rate of tissue survival compared to other vitrified protocols after harvesting (p < 0.05). Both controlled-rate freezing and V1 protocol groups displayed the most advanced stages of spermatogenesis with elongated spermatids and spermatozoa in 17.6 ± 1.3% and 16.3 ± 1.9% of seminiferous tubules based on histopathological evaluation, respectively. Hosts of the testicular graft from controlled-rate freezing had higher levels of serum testosterone compared to all other vitrified-thawed graft groups (p < 0.05). This study shows that completed spermatogenesis from whole neonatal mouse testes were obtained when frozen with controlled-rate freezing and V1 vitrification solution and that testicular cryopreservation efficacy vary with the protocol and vitrification technique.  相似文献   

17.
Cancer is the second major cause of death in the world. The problem of post-cancer infertility plays a significant role, because chemotherapy can be gonadotoxic. Cryopreservation of ovarian tissue before cancer therapy with re-implantation after convalescence is the potential key solution to this problem. The aim of this study was to test the viability of cryopreserved human ovarian cortex after long-term cooling in culture medium composed of permeable cryoprotectants. Ovarian fragments from sixteen patients were randomly divided into two groups. After the operation, tissue pieces assigned to both groups were cooled to 5 °C for 22–24 h, frozen and thawed. Group 1 pieces (n = 32) were cooled before cryopreservation in the standard culture medium, and Group 2 pieces (n = 32) were cooled in the freezing medium (culture medium+6% ethylene glycol+6% dimethyl sulfoxide+0.15 M sucrose). Freezing was performed in standard 5 ml cryo-vials with ice formation at −9 °C, cooling from −9 to −34 °C at a rate of −0.3 °C/min and plunging at −34 °C into liquid nitrogen. After thawing in a 100 °C (boiling) water bath, the removal of cryoprotectants was performed in 0.5 M sucrose with 20 min exposure in sucrose and 30 min stepping rehydration. The effectiveness of the pre-freezing cooling of tissue was evaluated by the development of follicles (histology). Six months after the autotransplantation, oocytes from the twenty-seven-year old, hormonally stimulated patient were retrieved and fertilized with her partner sperm through the intracytoplasmic spermatozoa injection (ICSI). For groups 1 and 2, 93.5 ± 1.9% and 96.4 ± 2.0% of the preantral follicles, respectively, were morphologically normal (P > 0.1) (with a tendency toward increasing in quality in Group 2). Six months after the auto-transplantation, two ICSI cycles resulted in the gathering and transplantation of high quality embryos, but no pregnancy had been established. Thirteen months after the auto-transplantation, the patient became spontaneously pregnant and delivered a healthy baby girl at term. Long-term (24 h) cooling of ovarian tissue to 5 °C before cryopreservation in the presence of permeable cryoprotectants simplifies the protocol of cryopreservation and has a tendency of increasing of the cells viability after thawing.  相似文献   

18.

Background

Cryopreservation of preantral follicles or ovarian tissues would enable the storage of large numbers of primordial follicles or preantral follicles and preserves the structural integrity of somatic and reproductive cells. In the present study, we compared the developmental potential of cryopreserved two-week-old mouse preantral follicles, ovarian tissue slices, two-week-old mouse ovaries and newborn mouse ovaries using a metal plate with a high cooling rate for cooling the droplet of vitrification solution.

Methods

Groups of 2 to 4 samples (including of 14-day old preantral follicles, ovarian tissue slices, whole ovaries, and whole newborn ovaries) were exposed to 4% ethylene glycol (EG) in DPBS + 10% FBS for 15 min and then rinsed in a vitrification solution composed of 6 M ethylene glycol and 0.4 M trehalose in DPBS + 10% FBS. Equilibration in room temperature was performed for 20–30 seconds for preantral follicle and 5 min equilibration was performed in an ice bath for ovaries. The samples were dropped onto the surface of metal plate around -180°C in the volume of 2 μl and 6 μl. After thawing, the ovarian tissue was mechanically isolated for collecting the preantral follicles. The thawed newborn ovaries were transplanted under the renal capsule of recipient male mice for 14 days. Preantral follicles collected from each groups were cultured individually in 20-μl droplets of α-MEM culture medium in culture dish for 12 days. On the day 12 of culture, the cumulus-oocyte complexes (COCs) were collected for IVM and IVF. Fertilization and embryo cleavage were scored.

Results

After the vitrification of 14-day-old preantral follicles using 2 μl or 6 μl droplet onto surface of metal plate, the results indicated that no significant difference in survival rate, antral-like cavity formation, COCs collected, 2 cell embryo cleavage and blastocyst development was found in vitrification of the 2 μl and 6 μl droplet groups. As comparing 14-day old ovarian tissue (ovarian tissue slices and whole ovaries) and whole newborn ovaries vitrified in 6 μl droplet, lower success rates of antral-like cavity formation and COCs collection were found in the whole ovaries group.

Conclusion

Our results suggest that the metal plate surface vitrification method is an appropriate and convenient method for cryopreservation of mouse ovaries and preantral follicles. The droplet volume of vitrification solution in 2 μl and 6 μl can be an option.  相似文献   

19.
There is an urgent need to preserve the ever-decreasing number of different species of fireflies all over the world. We sought to develop a vitrification procedure to cryopreserve the firefly embryos. The late stages of Luciola praeusta Kiesenwetter embryos were collected. Several impermeable and permeable protectants with various concentrations in different mediums (TNM-FH insect medium, Grace's medium, Dulbecco's Modification of Eagle's Medium (DMEM) and Dulbecco's Phosphate-Buffered Saline (DPBS)) were used. Embryos culturing in TNM-FH medium yielded the highest survival rate of 75.3 ± 3.6%. One-step, two-step and three-step methods were used in equilibrium procedure respectively. The highest survival rate (73.7% ±3.2%) occurred in embryos treated by three-step method ((1.5 M ethylene glycol (EG) + 2 M EG plus 8% polyvinylpyrrolidone (PVP) + 3 M EG, 8% PVP and 15% trehalose). Additionally, embryos exposed to 0.5 M trehalose presented a significantly higher survival rate (71.8 ± 2.7%) than embryos preserved in 0.5 M sucrose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号