首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes a novel pediatric upper limb motion index (PULMI) for children with cerebral palsy (CP). The PULMI is based on three-dimensional kinematics and provides quantitative information about upper limb motion during the Reach & Grasp Cycle. We also report key temporal-spatial parameters for children with spastic, dyskinetic, and ataxic CP. Participants included 30 typically-developing (TD) children (age=10.9±4.1 years) and 25 children with CP and upper limb involvement (age=12.3±3.7 years), Manual Ability Classification System (MACS) levels I-IV. The PULMI is calculated from the root-mean-square difference for eight kinematic variables between each child with CP and the average TD values, and scaled such that the TD PULMI is 100±10. The PULMI was significantly lower among children with CP compared to TD children (Wilcoxon Z=-5.06, p<.0001). PULMI scores were significantly lower among children with dyskinetic CP compared to spastic CP (Z=-2.47, p<.0135). There was a strong negative correlation between PULMI and MACS among children with CP (Spearman's rho=-.78, p<.0001). Temporal-spatial values were significantly different between CP and TD children: movement time (Z=4.06, p<.0001), index of curvature during reach (Z=3.68, p=.0002), number of movement units (Z=3.72, p=.0002), angular velocity of elbow extension during reach (Z=-3.96, p<.0001), and transport(1):reach peak velocities (Z=-2.48, p=.0129). A logistic regression of four temporal-spatial parameters, the Pediatric Upper Limb Temporal-Spatial Equation (PULTSE), correctly predicted 19/22 movement disorder subtypes (spastic versus dyskinetic CP). The PULMI, PULTSE, and key temporal-spatial parameters of the Reach & Grasp Cycle offer a quantitative approach to analyzing upper limb function in children with CP.  相似文献   

2.
Reaching is a well-practiced functional task crucial to daily living activities, and temporal–spatial measures of reaching reflect function for both adult and pediatric populations with upper-extremity motor impairments. Inertial sensors offer a mobile and inexpensive tool for clinical assessment of movement. This research outlines a method for measuring temporal–spatial reach parameters using inertial sensors, and validates these measures with traditional marker-based motion capture. 140 reaches from 10 adults, and 30 reaches from nine children aged 18–20 months, were recorded and analyzed using both inertial-sensor and motion-capture methods. Inertial sensors contained three-axis accelerometers, gyroscopes, and magnetometers. Gravitational offset of accelerometer data was measured when the sensor was at rest, and removed using sensor orientation measured at rest and throughout the reach. Velocity was calculated by numeric integration of acceleration, using a null-velocity assumption at reach start. Sensor drift was neglected given the 1–2 s required for a reach. Temporal–spatial reach parameters were calculated independently for each data acquisition method. Reach path length and distance, peak velocity magnitude and timing, and acceleration at contact demonstrated consistent agreement between sensor- and motion-capture-based methods, for both adult and toddler reaches, as evaluated by intraclass correlation coefficients from 0.61 to 1.00. Taken together with actual difference between method measures, results indicate that these functional reach parameters may be reliably measured with inertial sensors.  相似文献   

3.
ABSTRACT

Chronotype is the temporal preference for activity and sleep during the 24 h day and is linked to mental and physical health, quality of life, and mortality. Later chronotypes, so-called “night owls”, consistently display poorer health outcomes than “larks”. Previous studies have suggested that preterm birth (<37 weeks of gestation) is associated with an earlier chronotype in children, adolescents, and young adults, but studies beyond this age are absent. Our aim was to determine if adults born preterm at very low birth weight (VLBW, ≤1500 g) display different chronotypes than their siblings. We studied VLBW adults, aged 29.9 years (SD 2.8), matched with same-sex term-born siblings as controls. A total of 123 participants, consisting of 53 sibling pairs and 17 unmatched participants, provided actigraphy-derived data on the timing, duration, and quality of sleep from 1640 nights (mean 13.3 per participant, SD 2.7). Mixed effects models provided estimates and significance tests. Compared to their siblings, VLBW adults displayed 27 min earlier sleep midpoint during free days (95% CI: 3 to 51 min, p =.029). This was also reflected in the timing of falling asleep, waking up, and sleep-debt corrected sleep midpoint. The findings were emphasized in VLBW participants born small for gestational age. VLBW adults displayed an earlier chronotype than their siblings still at age 30, which suggests that the earlier chronotype is an enduring individual trait not explained by shared family factors. This preference could provide protection from risks associated with preterm birth.  相似文献   

4.

Background

Preterm birth is associated with abnormalities in growth, body composition, and metabolism during childhood, but adult data are scarce and none exist for their offspring. We therefore aimed to examine body composition and cardiovascular risk factors in adults born preterm and their children.

Methods

A cohort of 52 adults (aged 35.7 years, 54% female, 31 born preterm) and their term-born children (n=61, aged 8.0 years, 54% female, 60% from a preterm parent) were studied. Auxology and body composition (whole-body dual-energy X-ray absorptiometry) were measured, and fasting blood samples taken for metabolic and hormonal assessments.

Results

Adults born preterm had greater abdominal adiposity, displaying more truncal fat (p=0.006) and higher android to gynoid fat ratio (p=0.004). Although women born preterm and at term were of similar weight and BMI, men born preterm (n=8) were on average 20 kg heavier (p=0.010) and of greater BMI (34.2 vs 28.4 kg/m2; p=0.021) than men born at term (n=16). Adults born preterm also displayed a less favourable lipid profile, including lower HDL-C concentrations (p=0.007) and greater total cholesterol to HDL-C ratio (p=0.047). Children of parents born preterm tended to have more body fat than the children of parents born at term (21.3 vs 17.6%; p=0.055). Even after adjustment for mean parental BMI, children of parents born preterm had altered fat distribution, with more truncal fat (p=0.048) and greater android to gynoid fat ratio (p=0.009).

Conclusions

Adults born preterm, particularly men, have markedly increased fat mass and altered fat distribution. A similar increase in abdominal adiposity was observed in the term born offspring of parents born preterm, indicating that adverse outcomes associated with preterm birth may extend to the next generation.  相似文献   

5.
To determine whether airway smooth muscle undergoes a maturational change regarding force generation, length-tension relationships were determined in isolated trachealis strips from adult and preterm sheep. At the length of maximum force generation, passive active and total tensions of the adult muscle were 2.5 times greater than preterm values (P less than 0.001). KCl stimulation yielded a greater peak tension in the adult strips than in the preterm strips (P less than 0.01). Preterm strips required higher concentrations of KCl to initiate contractions and higher concentrations to reach peak tension. Acetylcholine- (ACh) induced contraction resulted in greater force development at each dose in the adult strips compared with preterm strips (P less than 0.001). The dose of ACh required to reach a half-maximal response was significantly less for the adult strips than for the preterm strips (P less than 0.005). These data demonstrate that both force generation and receptor sensitivity increase with age. This inability of immature smooth muscle to generate as much force as adult smooth muscle may help explain why very preterm neonates requiring intermittent positive-pressure ventilation are at risk for developing structural airway problems.  相似文献   

6.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

7.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

8.
PurposeTo compare the respiratory and neurological outcomes at two years of age of preterm children born before 33 weeks of gestation (WG) after early preterm premature rupture of membranes (EPPROM) between 14 and 24 WG with preterm children without EPPROM.ResultsNinety-four cases with EPPROM before 24WG have been included. The 31 children born from 26WG to 32WG were matched with 62 controls. The EPPROM group had poorer clinical evaluation at one year for motor (p = 0.003) and cognitive developmental scores (p = 0.016). Neuromotor rehabilitation was performed more often (p = 0.013). However, there was no difference at 2 years of age. Children born after EPPROM were hospitalized more often for bronchiolitis (p<0.001) during their first 2 years, which correlates with increased incidence of pneumothorax (p = 0.017), pulmonary hypoplasia (p = 0.004) and bronchopulmonary dysplasia (p = 0.005) during neonatal period.ConclusionAt two years, despite an increase in severe bronchiolitis and the need for more neuromotor rehabilitation during the first month of the life after discharge, there was no difference in neurological outcomes in the very preterm children of the EPPROM group compared to those born at a similar GA without EPPROM.  相似文献   

9.
Lower limb (LL) muscle morphology and growth are altered in children with cerebral palsy (CP). Muscle alterations differ with age and with severity of motor impairment, classified according to the gross motor classification system (GMFCS). Muscle alterations differ also with orthopedic intervention, frequently performed at the level of the shank muscles since an early age, such as the gastrocnemius. The aim was to investigate the alterations of treatment-naïve pelvis and thigh muscle lengths and volumes in children with GMFCS levels I and II, of varying ages.17 children with CP (GMFCS I: N = 9, II: N = 8, age: 11.7 ± 4 years), age-matched to 17 typically developing (TD) children, underwent MRI of the LL. Three-dimensional reconstructions of the muscles were performed bilaterally. Muscle volumes and lengths were calculated in 3D and compared between groups. Linear regression between muscle volumes and age were computed.Adductor-brevis and gracilis lengths, as well as rectus-femoris volume, were decreased in GMFCS I compared to TD (p < 0.05). Almost all the reconstructed muscle volumes and lengths were found to be altered in GMFCS II compared to TD and GMFCS I. All muscle volumes showed significant increase with age in TD and GMFCS I (R2 range: 0.3–0.9, p < 0.05). Rectus-femoris, hamstrings and adductor-longus showed reduced increase in the muscle volume with age in GMFCS II when compared to TD and GMFCS I.Alterations of treatment-naïve pelvis and thigh muscle volumes and lengths, as well as muscle growth, seem to increase with the severity of motor impairment in ambulant children with CP.  相似文献   

10.

Background

Very-low-birth-weight (VLBW, <1,500 g) infants have compromised bone mass accrual during childhood, but it is unclear whether this results in subnormal peak bone mass and increased risk of impaired skeletal health in adulthood. We hypothesized that VLBW is associated with reduced bone mineral density (BMD) in adulthood.

Methods and Findings

The Helsinki Study of Very Low Birth Weight Adults is a multidisciplinary cohort study representative of all VLBW births within the larger Helsinki area from 1978 to 1985. This study evaluated skeletal health in 144 such participants (all born preterm, mean gestational age 29.3 wk, birth weight 1,127 g, birth weight Z score 1.3), and in 139 comparison participants born at term, matched for sex, age, and birth hospital. BMD was measured by dual energy X-ray absorptiometry at age 18.5 to 27.1 y. Adults born with VLBW had, in comparison to participants born at term, a 0.51-unit (95% confidence interval [CI] 0.28–0.75) lower lumbar spine Z score and a 0.56-unit (95% CI 0.34–0.78) lower femoral neck Z score for areal BMD. These differences remained statistically significant after adjustment for the VLBW adults'' shorter height and lower self-reported exercise intensity.

Conclusions

Young adults born with VLBW, when studied close to the age of peak bone mass, have significantly lower BMD than do their term-born peers. This suggests that compromised childhood bone mass accrual in preterm VLBW children translates into increased risk for osteoporosis in adulthood, warranting vigilance in osteoporosis prevention. Please see later in the article for the Editors'' Summary  相似文献   

11.
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.  相似文献   

12.
The aim was to 1) determine intersession and intertrial reliability and 2) assess three sources of variability (intersubject, intersession and intertrial) of lower limb kinematic and electromyographic (EMG) variables during gait in toddlers with typical development (TD) and unilateral cerebral palsy (UCP) (age <3 years, independent walking experience ≤6 months). Gait kinematics and surface EMG were recorded in 30 toddlers (19 TD and 11 UCP), during two, 3D-motion capture sessions. Standard error of measurement (SEM) between trials (gait cycles) of the same session and between sessions was calculated to assess reliability. Standard deviations (SD) between subjects, sessions and trials were calculated to estimate sources of variability. Sixty-four percent of kinematic SEM-values were acceptable (2°-5°). Frontal plane measurements were most reliable (SEM 2°-4.6°). In toddlers with UCP, EMG variables were most reliable for affected side, distal muscles. Intrinsic (intertrial and intersubject) variability was high, reflecting both motor immaturity and the high variability of toddler gait patterns. In toddlers with UCP, variability was amplified by motor impairment and delayed motor development. 3D gait analysis and surface EMG are partially reliable tools to study individual gait patterns in toddlers in clinical practice and research, although some variables must be interpreted with caution.  相似文献   

13.

Objective

The control of gait requires executive and attentional functions. As preterm children show executive and attentional deficits compared to full-term children, performing concurrent tasks that impose additional cognitive load may lead to poorer walking performance in preterm compared to full-term children. Knowledge regarding gait in preterm children after early childhood is scarce. We examined straight walking and if it is more affected in very preterm than in full-term children in dual-task paradigms.

Study design

Twenty preterm children with very low birth-weight (≤ 1500 g), 24 preterm children with birth-weight > 1500 g, and 44 full-term children, born between 2001 and 2006, were investigated. Gait was assessed using an electronic walkway system (GAITRite) while walking without a concurrent task (single-task) and while performing one concurrent (dual-task) or two concurrent (triple-task) tasks. Spatio-temporal gait parameters (gait velocity, cadence, stride length, single support time, double support time), normalized gait parameters (normalized velocity, normalized cadence, normalized stride length) and gait variability parameters (stride velocity variability, stride length variability) were analyzed.

Results

In dual- and triple-task conditions children showed decreased gait velocity, cadence, stride length, as well as increased single support time, double support time and gait variability compared to single-task walking. Further, results showed systematic decreases in stride velocity variability from preterm children with very low birth weight (≤ 1500 g) to preterm children with birth weight > 1500 g to full-term children. There were no significant interactions between walking conditions and prematurity status.

Conclusions

Dual and triple tasking affects gait of preterm and full-term children, confirming previous results that walking requires executive and attentional functions. Birth-weight dependent systematic changes in stride velocity variability indicate poorer walking performance in preterm children who were less mature at birth.  相似文献   

14.
The purpose of this study was to investigate the effects of transversely sloped ballasted walking surface on gait and rearfoot motion (RFM) parameters. Motion analysis was performed with 20 healthy participants (15 male and 5 female) walking in six surface-slope conditions: two surfaces (solid and ballasted) by three slopes (0, 5, and 10 degrees). The gait parameters (walking velocity, step length, step rate, step width, stance time, and toe-out angle) showed significant surface effect (p = .004) and surface-slope interaction (p = .017). The RFM motion parameters (peak everted/inverted position, eversion/inversion velocity, and acceleration) revealed significant surface (p = .004) and slope (p = .024) effects. The ballasted conditions showed more cautious gait patterns with lower walk velocity, step length, and step rate and longer stance time. In the RFM parameters, the slope effect was more notable in the solid conditions due to the gait adaptations in the ballasted conditions. Ballast conditions showed reduced inversion and increased eversion and RFM range. The RFM data were comparable to other typical walking conditions but smaller than those from running.  相似文献   

15.
BackgroundIt is estimated that over 250 million children under 5 years of age in low- and middle-income countries (LMICs) do not reach their full developmental potential. Poor maternal diet, anemia, and micronutrient deficiencies during pregnancy are associated with suboptimal neurodevelopmental outcomes in children. However, the effect of prenatal macronutrient and micronutrient supplementation on child development in LMIC settings remains unclear due to limited evidence from randomized trials.Methods and findingsWe conducted a 3-arm cluster-randomized trial (n = 53 clusters) that evaluated the efficacy of (1) prenatal multiple micronutrient supplementation (MMS; n = 18 clusters) and (2) lipid-based nutrient supplementation (LNS; n = 18 clusters) as compared to (3) routine iron–folic acid (IFA) supplementation (n = 17 clusters) among pregnant women in the rural district of Madarounfa, Niger, from March 2015 to August 2019 (ClinicalTrials.gov identifier NCT02145000). Children were followed until 2 years of age, and the Bayley Scales of Infant and Toddler Development III (BSID-III) were administered to children every 3 months from 6 to 24 months of age. Maternal report of WHO gross motor milestone achievement was assessed monthly from 3 to 24 months of age. An intention-to-treat analysis was followed. Child BSID-III data were available for 559, 492, and 581 singleton children in the MMS, LNS, and IFA groups, respectively. Child WHO motor milestone data were available for 691, 781, and 753 singleton children in the MMS, LNS, and IFA groups, respectively. Prenatal MMS had no effect on child BSID-III cognitive (standardized mean difference [SMD]: 0.21; 95% CI: −0.20, 0.62; p = 0.32), language (SMD: 0.16; 95% CI: −0.30, 0.61; p = 0.50) or motor scores (SMD: 0.18; 95% CI: −0.39, 0.74; p = 0.54) or on time to achievement of the WHO gross motor milestones as compared to IFA. Prenatal LNS had no effect on child BSID-III cognitive (SMD: 0.17; 95% CI: −0.15, 0.49; p = 0.29), language (SMD: 0.11; 95% CI: −0.22, 0.44; p = 0.53) or motor scores (SMD: −0.04; 95% CI: −0.46, 0.37; p = 0.85) at the 24-month endline visit as compared to IFA. However, the trajectory of BSID-III cognitive scores during the first 2 years of life differed between the groups with children in the LNS group having higher cognitive scores at 18 and 21 months (approximately 0.35 SD) as compared to the IFA group (p-value for difference in trajectory <0.001). Children whose mothers received LNS also had earlier achievement of sitting alone (hazard ratio [HR]: 1.57; 95% CI: 1.10 to 2.24; p = 0.01) and walking alone (1.52; 95% CI: 1.14 to 2.03; p = 0.004) as compared to IFA, but there was no effect on time to achievement of other motor milestones. A limitation of our study is that we assessed child development up to 2 years of age, and, therefore, we may have not captured effects that are easier to detect or emerge at older ages.ConclusionsThere was no benefit of prenatal MMS on child development outcomes up to 2 years of age as compared to IFA. There was evidence of an apparent positive effect of prenatal LNS on cognitive development trajectory and time to achievement of selected gross motor milestones.Trial registrationClinicalTrials.gov NCT02145000.

Christopher R. Sudfeld and colleagues evaluate the benefit of multiple micronutrient supplementation and medium‐quantity lipid‐based nutrient supplementation in pregnancy on child development in rural Niger.  相似文献   

16.
BackgroundIn utero exposure to toxic metal substances can cause severe neurodevelopmental deficits in developing fetus and infant.MethodsWe evaluated the association of newborn umbilical cord blood lead concentration with early neurodevelopmental performance (cognitive, receptive language, expressive language, fine motor, gross motor and social-emotional development). The Bayley Scale of Infants Developments-III (BSID-III) was used to perform neurodevelopment outcomes at an average age of 6.5 months. In this prospective study, total of 167 mother-child pairs were enrolled from Western Rajasthan, India. Association between risk factors of lead contamination and newborn umbilical cord blood lead levels was observed. Multivariate regression was performed to see the association of cord blood lead level with infant neurodevelopment outcome.ResultsThe obtained newborn umbilical cord blood lead concentration 5.0–10.5 μg/dL was negatively associated with the sub-scale score of gross motor development (β-coefficient with 95 % CI; −0.29 (−5.0–0.11), p = 0.04). However, no associations were found with the score of cognitive, language, gross motor, and social-emotional development. The umbilical cord blood lead concentration <5.0 μg/dL was also not associated with the BSID-III scores. The mother's regular intake of calcium supplements during the antenatal period was significantly associated with a lower umbilical cord blood lead level (p-value 0.031).ConclusionThe data suggest that newborn umbilical cord blood lead concentration 0.5–10.5 μg/dL has a negative association with early gross motor development during infancy.  相似文献   

17.
It is common among competitive baseball players to swing bats while in the batter's box in an attempt to improve their batting performance. Players use bats of different weights during this time, and only a few studies have evaluated the optimal bat weight to increase performance. Previous studies have not investigated the optimal rest period after a warm-up with bats of varying weights. Therefore, we tested the peak bat velocity of 16 National Collegiate Athletic Association Division II intercollegiate baseball players at 1, 2, 4, and 8 minutes, after warming up with bats of 5 different weights. Measured variables were peak bat velocity at peak acceleration (PVPA), peak bat velocity of the swing (PV), peak bat acceleration (PA), and time to reach peak acceleration (TPA) using a chronograph, which measured the batting velocity in real time every 10 milliseconds throughout the swing. A repeated measure analysis of variance was run to assess group, time, and group by time interactions. If any main effects were found, a Tukey post hoc was employed to locate differences. There were significant (p ≤ 0.05) time effects for PVPA, PV, and PA but not for TPA. The PVPA, PV, and PA all increased over time, peaking from 4 to 8 minutes. There were no significant differences in any of the variables among the 5 bat weights used in the warm-up (p > 0.05). However, there were significant differences in PVPA, PV, and PA after 2, 4, and 8 minutes of rest compared with the preexperimental warm-up and 1-minute post-warm-up. From a practical standpoint, batters should warm up early and quickly in the batter's box to maximize the amount of recovery time before they swing at the plate. In addition, batters may want to take their time getting ready at the plate or take some pitches while at-bat in an attempt to maximize performance. Alternatively, the data imply that pitchers should throw their fastest pitch near the beginning of the at-bat to correspond with the potentially slower bat speeds of the batter.  相似文献   

18.

Introduction

Variability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation. However, variability can also be attributed to errors in control and coordination of the motor neurons themselves in diseases such as cerebral palsy (CP). Selective dorsal rhizotomy (SDR), a neurosurgical approach to sever sensory nerve roots, is thought to decrease redundant or excessive afferent signalling to intramedullary neurons. In addition to its demonstrated ability to reduce muscular spasticity, we hypothesised that SDR is able to decrease variability during gait, the most frequent functional motor activity of daily living.

Methods

Twelve CP children (aged 6.1±1.3yrs), who underwent SDR and performed gait analysis pre- and 12 months postoperatively, were compared to a control group of eleven typically developing (TD) children. Coefficients of variability as well as mean values were analysed for: temporal variables of gait, spatial parameters and velocity.

Results

Gait parameters of cadence (p = 0.006) and foot progression angle at mid-stance (p = 0.041) changed significantly from pre- to post-SDR. The variability of every temporal parameter was significantly reduced after SDR (p = 0.003–0.049), while it remained generally unchanged for the spatial parameters. Only a small change in gait velocity was observed, but variability in cadence was significantly reduced after SDR (p = 0.015). Almost all parameters changed with a tendency towards normal, but differences between TD and CP children remained in all parameters.

Discussion

The results confirm that SDR improves functional gait performance in children with CP. However, almost exclusively, parameters of temporal variability were significantly improved, leading to the conjecture that temporal variability and spatial variability may be governed independently by the motor cortex. As a result, temporal parameters of task performance may be more vulnerable to disruption, but also more responsive to treatment success of interventions such as SDR.  相似文献   

19.
Possibilities of conducting longitudinal human growth studies are very limited, since it is necessary to monitor the probands for a long time. Another problem can be a loss of data currency, and the small size of the final sample. The solution can be a follow-up semi-longitudinal observation. This research is drawn up as a short longitudinal monitoring of 1925 children (990 boys, 935 girls), aged 6-15 years, at 20 elementary schools in four regions of the Czech Republic, which has been conducted at the same time.Data of repeatedly examined probands of a wide age range were acquired in a short time period. With the help of a linear regression model with mixed effect, the growth velocity curves of 12 somatic traits have been obtained. The timing, intensity and duration of separate growth spurts have been observed, as well as the mutual location of both points of growth velocity, local maxima and minima, and points of the maximal acceleration and deceleration.The results demonstrate that the velocity of characters with variable growth dynamics (skin-fold thicknesses, circumferences of limbs) - contrary to characters with regular growth velocity - have a higher number of partial growth spurts and an opposite course. In the period of separate growth velocity, peaks of somatic characters with regular growth dynamics reach points of partial local minima. In comparison to previous longitudinal studies of body height growth dynamics, the shift of both the beginning and the peak of boys’ and girls’ pubertal spurt, to a lower age can be found.  相似文献   

20.
Twenty subjects, ten adults and ten children were tested in this study. Each test consisted of applying an ensemble of velocities to the lower limb using a torque motor in such a way that the entire range of motion of the knee was traversed. Eight velocities between 60°/s and 280°/s were reached at 2–3 different acceleration rates and 1–2 different rates of jerk. EMG from three muscles, vastus, rectus, and hamstring were recorded during each move. Regression and correlation coefficients between EMG and kinematic parameters indicated different reactions in both muscle groups and age groups to each of the three kinematic parameters. Adult muscle was dominated by a reaction to the velocity kinematic while children’s muscles were dominated by either acceleration or jerk. The extensor muscles of adults seem to be slightly more sensitive to acceleration and jerk than the flexors. In the muscle responses of children the exact opposite pattern is seen. The small sample size in this study does not allow for a meaningful statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号