首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.  相似文献   

3.
Cadmium (Cd) is widely distributed in the environment and easy adsorbed by living organisms with adverse effects. Exposure to Cd-contaminated food may disrupt lipid metabolism and increase human health risk. To study the perturbation effect of Cd on lipid metabolism in vivo, 24 male Sprague–Dawley (SD) rats were randomly assigned four groups and treated by Cd chloride solution (0, 1.375 mg/kg, 5.5 mg/kg, 22 mg/kg) for 14 days. The characteristic indexes of serum lipid metabolism were analyzed. Afterwards, untargeted metabolomics analysis was applied to explore the adverse effects of Cd on rats by liquid chromatography coupled with mass spectrometry (LC-MS). The results revealed that Cd exposure obviously decreased the average serum of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and caused an imbalance of endogenous compounds in the 22 mg/kg Cd-exposed group. Compared with the control group, 30 metabolites with significant differences were identified in the serum. Our results indicated that Cd caused lipid metabolic disorders in rats by disrupting linoleic acid and glycerophospholipid metabolism pathways. Furthermore, there were three kinds of remarkable differential metabolites—9Z,12Z-octadecadienoic acid, PC(20:4(8Z,11Z,14Z,17Z)/0:0), and PC(15:0/18:2(9Z,12Z)), which enriched the two significant metabolism pathways and could be the potential biomarkers.  相似文献   

4.
5.
6.
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.

Autophagy is required for the mobilization of membrane lipid components and lipid droplet dynamics during extended darkness in Arabidopsis.  相似文献   

7.
The effects of a hot water extract and fractional extracts from rabbiteye blueberry (Vaccinium ashei reade) leaves (BBL) on lipid metabolism were studied in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Feeding the hot water extract and fractional extracts from BBL alleviated hepatic triglyceride accumulation in the rats. Additionally, feeding with the flavonol glycoside (FG) and proanthocyanidin (PA) fractions lowered serum cholesterol levels in the obese rats. The results from measurements of the hepatic enzyme activity indicate that the hypolipidemic effects of the hot water extract and the PA fraction might be attributable to enhanced lipolysis in the liver. The reduced serum levels of C-reactive protein, an inflammatory cytokine, by the chlorogenic acid + rutin fraction and FG fraction might be associated with alleviating the metabolic abnormalities in obese rats. These results indicate that the BBL extracts, and especially FG and PA, exerted hypolipidemic effects on obese OLETF rats and suggest that an infusion of BBL can be useful as a dietary hypolipidemic component.  相似文献   

8.
Sleep curtailment is ubiquitous in modern day society. Sleep debt is associated with maladaptive physiological changes that can lead to cardiometabolic and neuropsychiatric pathologies. Recent literature has shown the effects of sleep restriction (SR) on systemic metabolic profiles in biofluids, implying that tissue-specific metabolomes are impacted by SR. To test this hypothesis, we assessed hepatic metabolic profiles of rats after 5 days of SR using UPLC–MS based metabolomics analysis and gene expression analysis. Our data suggests distinctive effects of SR on the liver metabolic profile of rats compared to forced-activity control animals. We observed specific impacts of SR on NAD metabolism through NAD accumulation and upregulation of Nampt, the rate determining step of NAD salvage. Additional multi-omic changes were observed in methionine metabolism, with an elevated SAM:SAH ratio under SR. This effect on one carbon metabolism is indicative of increased methylation potential. Changes in TCA cycle intermediates and ATP-citrate lyase (Acly) gene expression were observed that may be related to altered circulatory lipid profiles previously reported documenting the chrono-metabolic connection. Taken together with previous investigations, these observations are consistent with a model of decreased TCA activity with concomitant increase in lipogenesis induced by SR. These tissue-specific mechanistic insights into metabolic effects of SR provide a springboard to future metabolic intervention studies.  相似文献   

9.
Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.  相似文献   

10.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

11.
K Beier  A V?lkl  H D Fahimi 《FEBS letters》1992,310(3):273-276
TNF-alpha is a potent cytokine which induces marked hyperlipidemia. Because of the important role of peroxisomes in lipid metabolism we investigated the effects of human recombinant TNF-alpha upon rat liver peroxisomal enzymes. Sixteen hours after the administration of a single dose of 25 micrograms of TNF-alpha to male rats the activity of peroxisomal fatty acyl-CoA oxidase was reduced by 50%. This was confirmed also by immunoblotting and by quantitative immunoelectron microscopy which in addition revealed substantial reduction of the trifunctional protein (hydratase-dehydrogenase-isomerase) in peroxisomes. These observations suggest that the suppression of peroxisomal beta-oxidation may contribute to the perturbation of the isomerase) in peroxisomes. These observations suggest that the suppression of peroxisomal beta-oxidation may contribute to the perturbation of the lipid metabolism induced by TNF-alpha.  相似文献   

12.

Aims/hypotheses

To examine hepatic expression of cholesterol-trafficking proteins, mitochondrial StarD1 and endosomal StarD3, and their relationship with dyslipidaemia and steatosis in Zucker (fa/fa) genetically obese rats, and to explore their functional role in lipid metabolism in rat McArdle RH-7777 hepatoma cells.

Methods

Expression of StarD1 and StarD3 in rat liver and hepatoma samples were determined by Q-PCR and/or immunoblotting; lipid mass by colorimetric assays; radiolabelled precursors were utilised to measure lipid synthesis and secretion, and lipidation of exogenous apolipoprotein A-I.

Results

Hepatic expression of StarD3 protein was repressed by genetic obesity in (fa/fa) Zucker rats, compared with lean (Fa/?) controls, suggesting a link with storage or export of lipids from the liver. Overexpression of StarD1 and StarD3, and knockdown of StarD3, in rat hepatoma cells, revealed differential effects on lipid metabolism. Overexpression of StarD1 increased utilisation of exogenous (preformed) fatty acids for triacylglycerol synthesis and secretion, but impacted minimally on cholesterol homeostasis. By contrast, overexpression of StarD3 increased lipidation of exogenous apoA-I, and facilitated de novo biosynthetic pathways for neutral lipids, potentiating triacylglycerol accumulation but possibly offering protection against lipotoxicity. Finally, StarD3 overexpression altered expression of genes which impact variously on hepatic insulin resistance, inducing Ppargcla, Cyp2e1, Nr1h4, G6pc and Irs1, and repressing expression of Scl2a1, Igfbp1, Casp3 and Serpine 1.

Conclusions/interpretation

Targeting StarD3 may increase circulating levels of HDL and protect the liver against lipotoxicity; loss of hepatic expression of this protein, induced by genetic obesity, may contribute to the pathogenesis of dyslipidaemia and steatosis.  相似文献   

13.
Application of bio-pesticides in agriculture has been developed as alternative agents to conventional pesticides due to residues accumulating which causing detrimental effects to human and environment. The aim of this investigation is to evaluate biosafety of a bio-insecticide Beauveria bassiana using two products in female rats by single oral dose through hepato- and renal toxicity, hematotoxicity and lipid profile. The two products from B. bassiana (AUMC 9896) were metabolic crude (MC), and wettable powder formulation (WP) of the local isolate. Results showed a significant increase in values of erythrocytes (RBCs), leucocytes (WBCs), platelet count (Plt) and the absolute differential WBC counts. Liver enzymes (AST, ALT, and ALP) and globulin (Glb) content were reduced in the exposed female rats with both types of B. bassiana in comparison to controls. While ratio of AST/ALT and A/G, total protein level (TP) and albumin (Alb) were raised in Beauveria bassiana -treated rats (Bb - treated rats). Urea and creatinine concentrations decreased or increased significantly in treated rats. Moreover, there was a decline in the serum of lipid profiles in WP - treated rats, but LDL levels increased in all treated animal. Additionally, no mortality or toxicity in all treated. All animals treated showed non-significant modifications in body weight gain and a slight change in relative liver weights when compared to controls. These results suggest that both treatments effect markedly on function and somatic index of the liver and slight effects on CBC and lipid profile aspects of treated female rats.  相似文献   

14.
High levels of serum free fatty acids (FFA) and lower proportions of polyunsaturated (PU) FAs, specifically arachidonic acid (AA), are common in obesity, insulin resistance (IR), and type 2 diabetes mellitus. Dehydrepiandrosterone (DHEA) decreases body fat content, dietary fat consumption, and insulin levels in obese Zucker rats (ZR), a genetic model of human youth onset obesity and type 2 diabetes. This study was conducted to investigate DHEA's effects on lean and obese ZR serum FFA levels and total lipid (TL) FA profiles in heart and soleus muscle. We postulated that DHEA alters serum FFA levels and tissue TL FA profiles of obese ZR so that they resemble the levels and profiles of lean ZR. If so, DHEA may directly or indirectly alter tissue lipids, FFA flux, and perhaps lower IR in obese ZR. Lean and obese male ZR were divided into six groups with 10 animals in each: obese ad libitum control, obese pair-fed, obese DHEA, lean ad libitum control, lean pair-fed, and lean DHEA. All animals had ad libitum access to a diet whose calories were 50% fat, 30% carbohydrate, and 20% protein. Only the diets of the DHEA treatment groups were supplemented with 0.6% DHEA. Pair-fed groups were given the average number of calories per day consumed by their corresponding DHEA group, and ad libitum groups had 24-h access to the DHEA-free diet. Serum FFA levels and heart and soleus TL FA profiles were measured. Serum FFA levels were higher in obese (approximately 1 mmol/L) compared to lean (approximately 0.6 mmol/L) ZR, regardless of group. In hearts, monounsaturated (MU) FA were greater and PU FA were proportionally lower in obese compared to the lean rats. In soleus, saturated and MU FA were greater and PU FA were proportionally lower in the obese compared to the lean rats. DHEA groups displayed significantly increased proportions of TL AA and decreased oleic acid in both muscle types. Mechanisms by which DHEA alters TL FA profiles are a reflection of changes occurring within specific lipid fractions such as FFA, phospholipid, and triglyceride. This study provides initial insights into DHEA's lipid altering effects.  相似文献   

15.
16.
目的: 研究持续性运动训练(CT)与高强度间歇运动训练(HIIT)对正常和肥胖大鼠血清和肝脏FGF21蛋白含量及肝脏脂肪代谢的影响。方法: 雄性SD大鼠随机分为两组:普通饲料及45%高脂饲料喂养,8周后以普通饲料喂养,大鼠体重增加20%为肥胖造模成功标准。将正常大鼠随机分为正常安静组(LC)、正常高强度间歇运动训练组(LHI)、正常持续性运动训练组(LCT),肥胖大鼠随机分为肥胖安静组(OC)、肥胖高强度间歇运动训练组(OHI)及肥胖持续性运动训练组(OCT),每组10只,运动干预组大鼠进行8周不同方式负重游泳运动训练干预,末次运动干预间隔24 h后取血液检测血清炎症因子、FGF21水平,取肝脏组织检测脂质含量、脂代谢酶含量及FGF21表达水平。结果: 与LC组比较,OC组大鼠体重、血清炎症因子、肝脏甘油三酯(TG)含量显著增高(P<0.05),LHI组肝脏TG含量显著降低,LCT组肝脏FGF21表达水平显著增高(P<0.05)。与OC组比较,OHI组大鼠肝脏TG含量显著降低(P<0.05),线粒体CPT-1β、β-HAD酶含量显著升高(P<0.05),OCT组大鼠肝脏LPL、FAT/CD36酶含量显著增高,血清、肝脏FGF21水平均显著上升(P<0.05)。结论: 两种运动方式均能降低正常、肥胖大鼠体重及肥胖大鼠肝脏脂质沉积现象,其中HIIT上调线粒体脂肪氧化水平,显著降低正常、肥胖大鼠肝脏TG含量,而CT通过提高正常、肥胖大鼠肝脏FGF21蛋白表达及血清FGF21水平,促进肝脏摄取脂肪酸,对缓解肥胖大鼠肝脏脂质沉积效果有限。  相似文献   

17.
18.
Obesity (BMI ≥30 kg/m2) increases the risk of developing lifestyle-related diseases. A subgroup of obese individuals has been described as “metabolically healthy, but obese” (MHO). In contrast to at-risk obese (ARO), the MHO phenotype is defined by a favourable lipid profile and a normal or only slightly affected insulin sensitivity, despite the same amount of body fat. The objective was to characterize the metabolic phenotype of MHO subjects. We screened a variety of genes involved in lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC). Obese subjects (men and women; 18–70 years) with BMI ≥30 kg/m2 were characterized as MHO (n = 9) or as ARO (n = 10). In addition, eleven healthy, normal weight subjects characterized as healthy by the same criteria as described for the MHO subjects were included. We found that with similar weight, total fat mass and fat mass distribution, the ARO subjects have increased plasma levels of gamma-glutamyl transpeptidase and free fatty acids. This group also has altered expression levels of a number of genes linked to lipid metabolism in PBMC with reduced gene expression levels of uncoupling protein 2, hormone-sensitive lipase and peroxisome proliferator-activated receptor δ compared with MHO subjects. The present metabolic differences between subgroups of obese subjects may contribute to explain some of the underlying mechanisms causing the increased risk of disease among ARO subjects compared with MHO subjects.  相似文献   

19.
Jiang  Wenxia  Chen  Jianjun  Gong  Lei  Liu  Fang  Zhao  Huan  Mu  Jun 《Neurochemical research》2022,47(7):2052-2063

Post-stroke depression (PSD) is the most common mental disorder in stroke survivors. However, its specific pathophysiology remains largely unknown. Previous studies suggested a role of hippocampus in PSD. Therefore, we conducted this study to investigate the lipid metabolic signatures in hippocampus of PSD rats. Here, the liquid chromatography mass spectrometry was used to identify the lipid metabolic signatures in the hippocampus of PSD, control and stroke rats. Then, correlations between behavior indices and differential lipid metabolites in PSD rats were explored. Pathway and enrichment analysis were further conducted to uncover the crucial metabolic pathways related to PSD. Finally, we found that the lipid metabolic phenotype in hippocampus of PSD rats was substantially different from that in control and stroke rats, and identified 50 key lipid metabolites that were significantly decreased in PSD rats. These differential metabolites were mainly involved in glycerophospholipid metabolism. Meanwhile, the sucrose preference and immobility time were found to be significantly positively and negatively, respectively, correlated with glycerophospholipid metabolites. The pathway and enrichment analysis showed that the glycerophospholipid metabolism, especially cardiolipin metabolism, was significantly disturbed in PSD rats. These results suggested that the down-regulated glycerophospholipids in hippocampus, especially cardiolipin, might participate in the pathophysiology of PSD. Our findings would be helpful for future exploring the pathophysiology of PSD.

  相似文献   

20.
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号