首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. METHOD OF APPROACH: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrainedflexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. RESULTS: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. CONCLUSIONS: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.  相似文献   

2.
Investigations of biomechanical properties of pediatric cadaver cervical spines subjected to tensile or bending modes of loading are generally limited by a lack of available tissue and limiting sample sizes, both per age and across age ranges. It is therefore important to develop fixation techniques capable of testing individual cadavers in multiple modes of loading to obtain more biomechanical data per subject. In this study, an experimental apparatus and fixation methodology was developed to accommodate cadaver osteoligamentous head-neck complexes from around birth (perinatal) to full maturation (adult) [cervical length: 2.5-12.5 cm; head breadth: 6-15 cm; head length: 6-19 cm] and sequentially test the whole cervical spine in tension, the upper cervical spine in bending and the upper cervical spine in tension. The experimental apparatus and the fixation methodology provided a rigid casting of the head during testing and did not compromise the skull. Further testing of the intact skull and sub-cranial material was made available due to the design of the apparatus and fixation techniques utilized during spinal testing. The stiffness of the experimental apparatus and fixation technique are reported to better characterize the cervical spine stiffness data obtained from the apparatus. The apparatus and fixation technique stiffness was 1986 N/mm. This experimental system provides a stiff and consistent platform for biomechanical testing across a broad age range and under multiple modes of loading.  相似文献   

3.
Interdisciplinary communication of three-dimensional kinematic data arising from in vitro biomechanical tests is challenging. Complex kinematic representations such as the helical axes of motion (HAM) add to the challenge. The difficulty increases further when other quantities (i.e. load or tissue strain data) are combined with the kinematic data. The objectives of this study were to develop a method to graphically replay and animate in vitro biomechanical tests including HAM data. This will allow intuitive interpretation of kinematic and other data independent of the viewer's area of expertise. The value of this method was verified with a biomechanical test investigating load-sharing of the cervical spine. Three 3.0 mm aluminium spheres were glued to each of the two vertebrae from a C2-3 segment of a human cervical spine. Before the biomechanical tests, CT scans were made of the specimen (slice thickness=1.0 mm and slice spacing=1.5 mm). The specimens were subjected to right axial torsion moments (2.0 Nm). Strain rosettes mounted to the anterior surface of the C3 vertebral body and bilaterally beneath the facet joints on C3 were used to estimate the force flow through the specimen. The locations of the aluminium spheres were digitised using a space pointer and the motion analysis system. Kinematics were measured using an optoelectronic motion analysis system. HAMs were calculated to describe the specimen kinematics. The digitised aluminium sphere locations were used to match the CT and biomechanical test data (RMS errors between the CT and experimental points were less than 1.0 mm). The biomechanical tests were "replayed" by animating reconstructed CT models in accordance with the recorded experimental kinematics, using custom software. The animated test replays allowed intuitive analysis of the kinematic data in relation to the strain data. This technique improves the ability of experts from disparate backgrounds to interpret and discuss this type of biomechanical data.  相似文献   

4.

Background

Short-segment pedicle screw instrumentation (SSPI) is used for unstable burst fractures to correct deformity and stabilize the spine for fusion. However, pedicle screw loosening, pullout, or breakage often occurs due to the large moment applied during spine motion, leading to poor outcomes. The purpose of this study was to test the ability of a newly designed device, the Trans-Endplate Pedicle Pillar System (TEPPS), to enhance SSPI rigidity and decrease the screw bending moment with a simple posterior approach.

Methods

Six human cadaveric spines (T11-L3) were harvested. A burst fracture was created at L1, and the SSPI (Moss Miami System) was used for SSPI fixation. Strain gauge sensors were mounted on upper pedicle screws to measure screw load bearing. Segmental motion (T12-L2) was measured under pure moment of 7.5 Nm. The spine was tested sequentially under 4 conditions: intact; first SSPI alone (SSPI-1); SSPI+TEPPS; and second SSPI alone (SSPI-2).

Results

SSPI+TEPPS increased fixation rigidity by 41% in flexion/extension, 28% in lateral bending, and 37% in axial rotation compared with SSPI-1 (P<0.001), and it performed even better compared to SSPI-2 (P<0.001 for all). Importantly, the bending moment on the pedicle screws for SSPI+TEPPS was significantly decreased 63% during spine flexion and 47% in lateral bending (p<0.001).

Conclusion

TEPPS provided strong anterior support, enhanced SSPI fixation rigidity, and dramatically decreased the load on the pedicle screws. Its biomechanical benefits could potentially improve fusion rates and decrease SSPI instrumentation failure.  相似文献   

5.
Formalin fixation strongly influences biomechanical properties of the spine   总被引:7,自引:0,他引:7  
As fresh human cadaveric spine specimens for in vitro testing are hard to obtain and carry a potential risk of infection, the possibility of using embalmed spine specimens has been considered. The cross-linking effect of formalin fixation, however, raises uncertainties regarding the biomechanical likeness of preserved specimens. They have been reported to be stiffer, but no quantitative data exist.

The purpose of this study was to determine the biomechanical differences between fresh and formalin-fixed spine specimens, using L1–2 motion segments from six 16-week-old calf spines. The range of motion and neutral zone were determined in flexion-/extension, left/right axial rotation, and right/left lateral bending.

The range of motion decreased in the formalin fixed specimens by as much as 80%, and the neutral zone by as much as 96%. The results of this study therefore imply that, for biomechanical testing, formalin-fixed specimens are not representative of the in vivo conditions.  相似文献   


6.
Mono- and multi-segmental testing methods are required to identify segmental motion patterns and evaluate the biomechanical behaviour of the spine. This study aimed to evaluate a new testing system for multisegmental specimens using a robot combined with an optical motion analysis system. After validation of the robotic system for accuracy, two groups of calf specimens (six monosegmental vs. six multisegmental) were mounted and the functional unit L3-4 was observed. Using rigid body markers, range of motion (ROM), elastic zone (EZ) and neutral zone (NZ), as well as stiffness properties of each functional spine unit (FSU) was acquired by an optical motion capture system. Finite helical axes (FHA) were calculated to analyse segmental movements. Both groups were tested in flexion and extension. A pure torque of 7.5 Nm was applied. Statistical analyses were performed using the Mann-Whitney U-test. Repeatability of robot positioning was -0.001±0.018 mm and -0.025±0.023° for translations and rotations, respectively. The accuracy of the optical system for the proposed set-up was 0.001±0.034 mm for translations and 0.075±0.12° for rotations. No significant differences in mean values and standard deviations of ROM for L3-4 compared to literature data were found. A robot-based facility for testing multisegmental spine units combined with a motion analysis system was proposed and the reliability and reproducibility of all system components were evaluated and validated. The proposed set-up delivered ROM results for mono- and multi-segmental testing that agreed with those reported in the literature. Representing the FHA via piercing points determined from ROM was the first attempt showing a relationship between ROM and FHA, which could facilitate the interpretation of spine motion patterns in the future.  相似文献   

7.
Apparatus-induced artifacts may invalidate standard spine testing protocols. Kinematic measurements may be compromised by the configuration of motion capture equipment. This study has determined: (1) the influence of machine design (component friction) on in vitro spinal kinetics; (2) the sensitivity of kinematic measurements to variations in the placement of motion capture markers. A spinal loading simulator has been developed to dynamically apply pure bending moments (three axes) with or without a simultaneous compressive preload. Two linear slider types with different friction coefficients, one with caged ball bearings and one with high-precision roller bearings on rails, were mounted and specimen response compared in sequential tests. Three different optoelectronic marker cluster configurations were mounted on the specimen and motion data was captured simultaneously from all clusters during testing. A polymer tube with a uniform bending stiffness approximately equivalent to a polysegmental lumbar spine specimen was selected to allow reproducible behavior over multiple tests. The selection of sliders for linear degrees of freedom had a marked influence on parasitic shear forces. Higher shear forces were recorded with the caged-bearing design than with the high-precision rollers and consequently a higher moment was required to achieve a given rotation. Kinematic accuracy varied with each marker configuration, but in general higher accuracy was achieved with larger marker spacings and situations where markers moved predominantly parallel to the camera's imaging plane. Relatively common alternatives in the mechanical components used in an apparatus for in vitro spine testing can have a significant influence on the measured kinematic and kinetics. Low-magnitude parasitic shear forces due to friction in sliders induces a linearly increasing moment along the length of the specimen, precluding the ideal of pure moment application. This effect is compounded in polysegmental specimens. Kinematic measurements are highly sensitive to marker design and placement, despite equivalent absolute precision of individual marker measurements, however marker configurations can be designed to minimize errors related to spatial distribution and system bias.  相似文献   

8.
Fractures of the odontoid present frequently in spinal trauma, and Type II odontoid fractures, occurring at the junction of the odontoid process and C2 vertebrae, represent the bulk of all traumatic odontoid fractures. It is currently unclear what soft-tissue stabilizers contribute to upper cervical motion in the setting of a Type II odontoid fracture, and evaluation of how concomitant injury contributes to cervical stability may inform surgical decision-making as well as allow for the creation of future, accurate, biomechanical models of the upper cervical spine. The objective of the current study was to determine the contribution of soft-tissue stabilizers in the upper cervical spine following a Type II odontoid fracture. Eight cadaveric C0-C2 specimens were evaluated using a robotic testing system with motion tracking. The unilateral facet capsule (UFC) and anterior longitudinal ligament (ALL) were serially resected to determine their biomechanical role following odontoid fracture. Range of motion (ROM) and moment at the end of intact specimen replay were the primary outcomes. We determined that fracture of the odontoid significantly increases motion and decreases resistance to intact motion for flexion–extension (FE), axial rotation (AR), and lateral bending (LB). Injury to the UFC increased AR by 3.2° and FE by 3.2°. ALL resection did not significantly increase ROM or decrease end-point moment. The UFC was determined to contribute to 19% of intact flexion resistance and 24% of intact AR resistance. Overall, we determined that Type II fracture of the odontoid is a significant biomechanical destabilizer and that concurrent injury to the UFC further increases upper cervical ROM and decreases resistance to motion in a cadaveric model of traumatic Type II odontoid fractures.  相似文献   

9.
This paper presents a novel application of a velocity-based force control routine used for robotic biomechanical testing. The routine employs a jog function, available from the robot's motion commands, that permits easy adjustment of velocity on each axis. Force and moment targets are achieved by adjusting jog velocities in proportion to force or moment errors while limiting the maximum velocity of the system. The force control jog routine does not require specimen stiffness values and is inherently stable. The performance of the method was shown to be suitable for unconstrained in vitro spine testing in a rabbit model where extremely small motions are necessary to maintain the target force values. The jogging feature on which this work is based is a feature available on most robots and is equally applicable to a serial robot. The simplicity, stability, and performance of this method warrant its consideration for other robotic biomechanical testing applications where force control is required.  相似文献   

10.
To evaluate the clinical outcome of two different surgical treatments in treating degenerative scoliosis. Forty patients with degenerative scoliosis hospitalized in our department from June 2010 to June 2012 were selected. They were randomly divided into two groups. The first group was performed on the points with nerve or spinal compression for decompression, bone grafting, and short-segmental fixation in situ; The second group was treated with sufficient decompression, long-segmental fixation, and short-segmental fusion to operate orthopedic on scoliosis in three dimensions. All patients completed the follow-up period for more than 1 year, with the average of 18 months. Bone grafting fusion was achieved in all of the patients. The second group showed significantly better result in remission rate of postoperative pain and ODI improvement rate than the first group. Long-segmental internal fixation orthopedic is a better surgical option for patients with degenerative scoliosis to achieve sufficient decompression and three-dimensional orthopedic; therefore, it is a better solution for biomechanical reconstruction of spine.  相似文献   

11.
Pure moment testing has become a standard protocol for in vitro assessment of the effect of surgical techniques or devices on the bending rigidity of the spine. Of the methods used for pure moment testing, cable-driven set-ups are popular due to their low requirements and simple design. Fixed loading rings are traditionally used in conjunction with these cable-driven systems. However, the accuracy and validity of the loading conditions applied with fixed ring designs have raised some concern, and discrepancies have been found between intended and prescribed loading conditions for flexion-extension. This study extends this prior work to include lateral bending and axial torsion, and compares this fixed ring design with a novel "3D floating ring" design. A complete battery of multi-axial bending tests was conducted with both rings in multiple different configurations using an artificial lumbar spine. Applied moments were monitored and recorded by a multi-axial load cell at the base of the specimen. Results indicate that the fixed ring design deviates as much as 77% from intended moments and induces non-trivial shear forces (up to 18 N) when loaded to a non-destructive maximum of 4.5 Nm. The novel 3D floating ring design largely corrects the inherent errors in the fixed ring design by allowing additional directions of unconstrained motion and producing uniform loading conditions along the length of the specimen. In light of the results, it is suggested that the 3D floating ring set-up be used for future pure moment spine biomechanics applications using a cable-driven apparatus.  相似文献   

12.
To investigate the mechanical and biomechanical properties of nickel–titanium (Ni–Ti) shape memory alloy scaphoid arc nail (NT‐SAN) fixator as well as study the surgical method of treating carpal scaphoid fractures and evaluate its clinical efficacy. (1) Static and dynamic bending tests with embedded axial bending fixture were conducted to study the mechanical properties. (2) To evaluate biomechanical strength and fatigue, 32 scaphoid samples were classified into four groups to perform the fixation rigidity test: intramedullary Kirschner fixation (group A), Kirschner straddle nail fixation (group B), screw nail fixation (group C), and NT‐SAN fixation (group D). Next, 24 scaphoid waist fracture models were classified to conduct fatigue experiments as follows: Kirschner straddle nail fixation (group E), screw nail fixation (group F), and NT‐SAN fixation (group G). (3) The Krimmer score chart was used for clinical evaluations. (1) NT‐SAN showed excellent mechanical performance and a long lifespan. (2) NT‐SAN was fixated with a strong intensity and an anti‐fatigue outcome. (3) Ninety‐eight interviewed patients were satisfied with the therapeutic effects of the arc nail (satisfaction rate: 95.92%). The designed strength and hardness of NT‐SAN corresponded with the anatomical characteristics of the scaphoid, and the designed mechanical properties met the biomechanical requirements of a scaphoid fracture. The fatigue strength can meet the requirements of bone healing after the scaphoid fracture. Clinical trials on NT‐SAN scaphoid fracture treatment have shown that the surgery is simple and the clinical results are satisfactory. The therapeutic level of NT‐SAN is III; thus, it is worth promoting.  相似文献   

13.
Intervertebral disc degeneration, a leading cause of low back pain, poses a significant socioeconomic burden with a broad array of costly treatment options. Mechanical loading is important in disease progression and treatment. Connecting mechanics and biology is critical for determining how loading parameters affect cellular response and matrix homeostasis. A novel ex-vivo experimental platform was developed to facilitate in-situ loading of rabbit functional spinal units (FSUs) with relevant biological outcome measures. The system was designed for motion outside of an incubator and validated for rigid fixation and physiologic environmental conditions. Specimen motion relative to novel fixtures was assessed using a digitizer; fixture stiffness exceeded specimen stiffness by an order of magnitude. Intradiscal pressure (IDP), measured using a fiber-optic pressure transducer, confirmed rigidity and compressive force selection. Surrounding media was controlled at 37 °C, 5% O(2)/CO(2) using a closed flow loop with an hypoxic incubator and was validated with probes in the specimen chamber. FSUs were subjected to cyclic compression (20 cycles) and four-hour creep at 1.0 MPa. Disc tissue was analyzed for cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which showed high viability (>90%) regardless of loading. Conditioned media was assayed for type-II collagen degradation fragments (CTX-II) and an aggrecan epitope (CS-846) associated with new aggrecan synthesis. CTX-II concentrations were not associated with loading, but CS-846 concentrations appeared to be increased with loading. Preservation of the full FSU allows physiologic load transmission and future multi-axis motion and identification of load-responsive proteins, thereby forming a new niche in intervertebral disc organ culture.  相似文献   

14.
Recently, there has been a rapid increase in the use of cervical spine interbody fusion cages, differing in design and biomaterial used, in competition to autologous iliac bone graft and bone cement (PMMA). Limited biomechanical differences in primary stability, as well as advantages and disadvantages of each cage or material have been investigated in studies, using an in vitro human cervical spine model. 20 human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or PMMA after discectomy. Non-destructive biomechanical testing was performed, including flexion/extension and lateral bending using a spine testing apparatus. Three-dimensional segmental range of motion (ROM) was evaluated using an ultrasound measurement system. ROM increased more in flexion/extension and lateral bending after PMMA fusion (26.5%/36.1%), then after implantation of the Ecopore-cage (8.1%/7.8%). In this first biomechanical in vitro examination of a new porous ceramic bone replacement material a) the feasibility and reproducibility of biomechanical cadaveric cervical examination and its applicability was demonstrated, b) the stability of the ceramic cage as a stand alone interbody cage was confirmed in vitro, and c) basic information and knowledge for our intended biomechanical and histological in vivo testing, after implantation of Ecopore in cervical sheep spines, were obtained.  相似文献   

15.
The biomechanical properties of the ligamentous cadaver spine have been previously examined using a variety of experimental testing protocols. Ongoing technical challenges in the biomechanical testing of the spine include the application of physiologic compressive loads and the application of dynamic bending moments while allowing unconstrained three-dimensional motion. The purpose of this study was to report the development of a novel pendulum apparatus that addressed these challenges and to determine the effects of various axial compressive loads on the dynamic biomechanical properties of the lumbar functional spinal unit (FSU). Lumbar FSUs were tested in flexion and extension under five axial compressive loads chosen to represent physiologic loading conditions. After an initial rotation, the FSUs behaved as a dynamic, underdamped vibrating elastic system. Bending stiffness and coefficient of damping increased significantly as the compressive pendulum load increased. The apparatus described herein is a relatively simple approach to determining the dynamic bending properties of the FSU, and potentially disc arthroplasty devices. It is capable of applying physiologic compressive loads at dynamic rates without constraining the kinematics of the joints, crucial requirements for testing FSUs in vitro.  相似文献   

16.
This paper reports on the design and development of a multi-axis (up to 6 axes) mechanical tester for spinal research and testing. The developed spine tester allowed true motion to be simulated on a specimen in pure or combined modes. To demonstrate the capability of the new tester flexural stiffness properties of sheep lumbar motion segments were evaluated together wiith a non-contact speckle displacement measurement system. The flexural stiffness of the specimens was measured and compared under constrained and non-constrained testing conditions; with relieving of shear forces (non-constrained), it was found that the specimen behaved in a 'stiffer' manner.  相似文献   

17.
##正## In this study a lumbar spinal fusion animal model is established to assess the effect of spinal fusion cage,and explore theminimum area ratio of titanium cage section to vertebral section that ensures bone healing and biomechanical property.Lumbarcorpectomy was conducted by posterolateral approach with titanium cage implantation combined with plate fixation.Titaniumcages with the same length but different diameters were used.After implantation of titanium cages,the progress of bone healingwas observed and the bone biomechanical properties were measured,including deformation and displacement in axial compression,flexion,extension,and lateral bending motion.The factors affecting the in vivo growth of spine supporting body wereanalyzed.The results show that the area ratio of titanium cage section to vertebral section should reach 1/2 to ensure the bonehealing,sufficient bone intensity and biomechanical properties.Some bone healing indicators,such as BMP,suggest that there isa relationship between the peak time and the peak value of bone formation and metabolism markers and the bone healing strength.  相似文献   

18.
Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.  相似文献   

19.
Multisegmental biomechanical studies on the lumbar spine are steadily increasing in importance. Only in this way can we acquire knowledge about the physiological behaviour of the entire lumbar spine. Furthermore, these studies allow us to analyse in vitro the biomechanics of manipulated lumbar spines after various surgical operations on the spine. A load simulator was developed to investigate multisegmental lumbar spine mobility, and its function was investigated in an initial study on 19 fresh--frozen specimens of human lumbar spine. After x-ray examination and determination of the bone mineral density, the specimens were loaded up to 10 Nm in the automatic electromechanical loading system under flexion/extension, lateral bending and axial rotation. An ultrasound-based motion analysis system was used to measure the displacements of the vertebrae involved.  相似文献   

20.
Inappropriate lordotic angle of lumbar fusion cage could be associated with cage damage or subsidence. The biomechanical influence of cage lordotic angle on lumbar spine has not been fully investigated. Four surgical finite element models were constructed by inserting cages with various lordotic angles at L3-L4 disc space. The four motion modes were simulated. The range of motion (ROM) decreased with increased lordotic angle of cage in flexion, extension, and rotation, whereas it was not substantially changed in bending. The maximum stress in cage decreased with increased lordotic angle of cage in all motion modes. The maximum stress in endplate at surgical level increased with increased lordotic angle of cage in flexion and rotation, whereas it was not substantially changed in extension and bending. The facet joint force (FJF) was much smaller than that for the intact conditions in extension, bending, and rotation, while it was not substantially changed in flexion. In conclusion, the ROM, stresses in the cage and endplate at surgical level are sensitive to the lordotic angle of cage. The increased cage lordotic angle may provide better stability and reduce the risk of cage damage, whereas it may increase the risk of subsidence in flexion and rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号