首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perturbation training is an emerging approach to reduce fall risk in the elderly. This study examined potential differences in retention of improvements in reactive gait stability over 14 weeks resulting from unexpected trip-like gait perturbations. Twenty-four healthy middle-aged adults (41–62 years) were assigned randomly to either a single perturbation group (SINGLE, n = 9) or a group subjected to eight trip-like gait perturbations (MULTIPLE, n = 15). While participants walked on a treadmill a custom-built brake-and-release system was used to unexpectedly apply resistance during swing phase to the lower right limb via an ankle strap. The anteroposterior margin of stability (MoS) was calculated as the difference between the anterior boundary of the base of support and the extrapolated centre of mass at foot touchdown for the perturbed step and the first recovery step during the first and second (MULTIPLE group only) perturbation trials for the initial walking session and retention-test walking 14 weeks later. Group MULTIPLE retained the improvements in reactive gait stability to the perturbations (increased MoS at touchdown for perturbed and first recovery steps; p < 0.01). However, in group SINGLE no differences in MoS were detected after 14 weeks compared to the initial walking session. These findings provide evidence for the requirement of a threshold trip-perturbation dose if adaptive changes in the human neuromotor system over several months, aimed at the improvement in fall-resisting skills, are to occur.  相似文献   

2.
This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity.  相似文献   

3.
After perturbation of the gait, feedback information may help regaining balance adequately, but it remains unknown whether adaptive feedback responses are possible after repetitive and unexpected perturbations during gait and if there are age-related differences. Prior experience may contribute to improved reactive behavior. Fourteen old (59-73 yrs) and fourteen young (22-31 yrs) males walked on a walkway which included one covered element. By exchanging this element participants either stepped on hard surface or unexpectedly on soft surface which caused a perturbation in gait. The gait protocol contained 5 unexpected soft trials to quantify the reactive adaptation. Each soft trial was followed by 4-8 hard trials to generate a wash-out effect. The dynamic stability was investigated by using the margin of stability (MoS), which was calculated as the difference between the anterior boundary of the base of support and the extrapolated position of the center of mass in the anterior-posterior direction. MoS at recovery leg touchdown were significantly lower in the unexpected soft trials compared to the baseline, indicating a less stable posture. However, MoS increased (p<0.05) in both groups within the disturbed trials, indicating feedback adaptive improvements. Young and old participants showed differences in the handling of the perturbation in the course of several trials. The magnitude of the reactive adaptation after the fifth unexpected perturbation was significantly different compared to the first unexpected perturbation (old: 49±30%; young: 77±40%), showing a tendency (p=0.065) for higher values in the young participants. Old individuals maintain the ability to adapt to feedback controlled perturbations. However, the locomotor behavior is more conservative compared to the young ones, leading to disadvantages in the reactive adaptation during disturbed walking.  相似文献   

4.
The purpose of this study was to examine the age-related predictive and feedback adaptive locomotor improvements in the components of dynamic stability control during disturbed walking. Thirteen old (62–74 yrs) and ten young (23–30 yrs) male subjects performed a gait protocol on a gangway, which included one covered element. By exchanging this element, the subjects walked either solely over hard surface or experienced a perturbation of the gait on the soft surface element. The gait protocol consisted of a baseline on hard surface and an adaptation phase with 19 trials on soft or hard (2nd, 8th and 19th) surface. The investigation of dynamic stability was made by using the margin of stability (MS), which was calculated as the difference between the base of support and the extrapolated center of mass (CM). Horizontal velocity of CM and its vertical projection in anterior–posterior direction as well as the eigenfrequency of an inverted pendulum generate the extrapolated CM. As a result of the first unexpected disturbance, MS was decreased in the step following the perturbation compared to baselines in both age-groups. This decrease was higher for the old participants compared to the young ones, indicating a more unstable position in the step after the perturbation for the elderly. In the following adaptation phase, MS returned to baseline values in both age-groups. In the hard trial after the first unexpected perturbation, both age-groups increased MS at touchdown of the disturbed leg compared to baseline, reflecting fast predictive adjustments. Our findings show that the well-known age-related biological impairments did not inhibit the adaptive improvements in the components of dynamic stability in the elderly. However, the feedback corrections after the first unexpected perturbation were less effective for the elderly. This may increase the risk of falling.  相似文献   

5.
This study sought to investigate the effects of obesity on falls and dynamic stability control in young adults when subject to a standardized treadmill-induced gait-slip. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. After their muscle strength was assessed at the right knee under maximum voluntary isometric (flexion and extension) contractions, participants were moved to an ActiveStep treadmill. Following 5 normal walking trials on the treadmill, all participants encountered an identical and unexpected slip defined as a perturbation in the anterior direction with the magnitude of 24-cm slip distance and 2.4-m/s peak slip velocity. The trials were categorized as a fall or recovery based on the reliance of the subject on external support following the slip. Compared with the normal-weight group, the obese group demonstrated less relative muscle strength and fell more responding to the slip (78.3% vs. 40.0%, p=0.009). After adjusting the body height and gender, the results indicated that the obese group was 19.1-time (95% confidence interval: [2.06, 177.36]) more prone to a fall than the normal-weight group when experiencing the same treadmill-induced slip. The obese group showed significantly impaired dynamic stability after slip possibly due to the inability of controlling the trunk segment׳s backward lean movement. Obesity measurements explained more slip outcome variance than did the strength measurements (53.4% vs. 18.1%). This study indicates that obesity most likely influences the ability to recover from slip perturbations. It is important to develop interventions to improve the capability of balance recovery among individuals with obesity.  相似文献   

6.
While perturbation training is promising in reducing fall-risk among older adults, its impact on altering their spontaneous gait pattern has not been investigated. The purpose of this study was to determine to what extent older adults' gait pattern would be affected by exposure to repeated slips. Seventy-three community-dwelling older adults (age: 72.6±5.4 years) underwent 24 repeated-slip exposure induced by unannounced unlocking and relocking of low-friction sections of a 7-m pathway upon which they walked. Full body kinematics and kinetics were recorded during the training. The gait parameters and the center of mass (COM) stability against backward balance loss were compared before and after the training. The results revealed that the training reduced fall incidence from 43.8% upon the novel slip to 0 at the end of training. After the training, subjects significantly improved gait stability by forward positioning of their COM relative to the base of support without altering gait speed. This forward COM shift resulted from a shortened step at the end of single stance and forward trunk leaning during double stance. They also adopted flat foot landing with knee flexed at touchdown (with an average change of 6.9 and 4.1 degrees, respectively). The perturbation training did alter community-dwelling older adults' spontaneous gait pattern. These changes enabled them to improve their volitional control of stability and their resistance to unpredictable and unpreventable slip-related postural disturbance.  相似文献   

7.
To examine the control of dynamic stability and characteristics of the compensatory stepping responses to an unexpected anterior gait slip induced under the non-involved limb in people with hemi-paretic stroke (PwHS) and to examine any resulting adaptive changes in these on the second slip due to experience from prior slip exposure. Ten PwHS experienced overground slip (S1) during walking on the laboratory walkway after 5–8 regular walking (RW) trials followed by a second consecutive slip trial (S2). The slip outcome (backward loss of balance, BLOB and no loss of balance, NLOB) and COM state (i.e. its COM position and velocity) stability were examined between the RW and S1 and S1 and S2 at touchdown (TD) of non-involved limb and at liftoff (LO) of the contralateral limb. At TD there was no difference in stability between RW and S1, however at LO, subjects demonstrated a lower stability on S1 than RW resulting in a 100% backward loss of balance (BLOB) with compensatory stepping response (recovery step, RS, 4/10 or aborted step, AS, 6/10). On S2, although there was no change in stability at TD, there was a significant improvement in stability at LO with a 40% decrease in BLOB. There was also a change in step strategy with a decrease in AS response (60% to 35%, p<0.05) which was replaced by an increase in the ability to step (increased compensatory step length, p<0.05) either via a recovery step or a walkover step. PwHS have the ability to reactively control COM state stability to decrease fall-risk upon a novel slip; prior exposure to a slip did not significantly alter feedforward control but improved the ability to use such feedback control for improved slip outcomes.  相似文献   

8.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   

9.
Aging-associated fall-risk assessment is crucial for fall prevention. Thus, this study aimed to develop a prognostic model to predict fall-risk following an unexpected over-ground slip perturbation based on normal gait pattern in healthy older adults. 112 healthy older adults who experienced a novel slip in a safe laboratory environment were included. Their slip trial and natural walking trial immediately prior to it were analyzed. To identify the best fall-risk predictive model, gait related variables including step length, segment angles, center of mass state, and ground reaction force (GRF) were determined and inputted into a stepwise logistic regression. The optimal slip-induced fall prediction model was based on the right thigh angle at slipping foot touchdown (TD), the maximum GRF of the slipping limb after TD, and the momentum change from TD to recovery foot liftoff (LO), with an overall prediction accuracy of 75.9%, predicting 74.5% of falls (sensitivity) and 77.2% of recoveries (specificity). Conversely, a model based on clinical and demographic measures predicted 78.2% of falls and 47.4% of recoveries, resulting in a much lower overall accuracy of 62.5%. The fall-risk model based on normal gait pattern which was developed for slip-induced perturbations in healthy older adults was able to provide a high predictive accuracy. This information could provide insight about the ideal normal gait measures which could be used to contribute towards development of therapeutic strategies related to dynamic balance and fall prevention to enhance preventive interventions in populations with high-risk for slip-induced falls.  相似文献   

10.
This study examined the effects of reduced plantar cutaneous afferent feedback on predictive and feedback adaptive locomotor adjustments in dynamic stability during perturbed walking. Twenty-two matched participants divided between an experimental-group and a control-group performed a gait protocol, which included surface alterations to one covered exchangeable gangway-element (hard/soft). In the experimental-group, cutaneous sensation in both foot soles was reduced to the level of sensory peripheral neuropathy by means of intradermal injections of an anaesthetic solution, without affecting foot proprioception or muscles. The gait protocol consisted of baseline trials on a uniformly hard surface and an adaptation phase consisting of nineteen trials incorporating a soft gangway-element, interspersed with three trials using the hard surface-element (2nd, 8th and 19th). Dynamic stability was assessed by quantifying the margin of stability (MS), which was calculated as the difference between the base of support (BS) and the extrapolated centre of mass (CM). The horizontal velocity of the CM and its vertical projection in the anterior-posterior direction and the eigenfrequency of an inverted pendulum determine the extrapolated-CM. Both groups increased the BS at the recovery step in response to the first unexpected perturbation. These feedback corrections were used more extensively in the experimental-group, which led to a higher MS compared to the control-group, i.e. a more stable body-position. In the adaptation phase the MS returned to baseline similarly in both groups. In the trial on the hard surface directly after the first perturbation, both groups increased the MS at touchdown of the disturbed leg compared to baseline trials, indicating rapid predictive adjustments irrespective of plantar cutaneous input. Our findings demonstrate that the locomotor adaptational potential does not decrease due to the loss of plantar sensation.  相似文献   

11.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

12.
The purpose of this study was to determine whether stability and limb support play a similar role in governing slip outcome in gait-slip as in sit-to-stand-slip, and whether such prediction could also be derived based on measures of these variables during regular, unperturbed movements. Fifty-three and forty-one young subjects all took one recovery step following an unannounced, novel, forward slip induced in gait and in sit-to-stand, respectively. Logistic regression was used to predict recovery outcome based on preslip and reactive measures of stability and limb support across tasks. Following slip onset, all subjects in both tasks experienced rapid decay in stability and limb support (indicated by a hip descent), leading to some actual falls that could not have been predicted from regular, preslip walking. Immediately before recovery step touchdown, stability and limb support could together best predict 88.9% and 100% falls, respectively, for gait-slip and sit-to-stand-slip. Because of differences in the execution of the recovery step, stability became a better predictor of fallers in sit-to-stand-slip than in gait-slip after recovery limb touchdown. Recovery steps were highly effective in restoring stability, regardless of outcome and task. The predictive strength of stability diminished in gait-slip or reduced in sit-to-stand-slip after recovery touchdown, while limb support remained able to differentiate fallers from those who recovered in both tasks. When slip-induced instability was combined with inadequate limb support, falls were nearly inevitable in both tasks.  相似文献   

13.
Aging is a critical factor to influence the functional performance during daily life. Without an appropriate posture control response when experiencing an unexpected external perturbation, fall may occur. A novel six-degree-of freedom platform with motion control protocol was designed to provide a real-life simulation of unexpected disturbance in order to discriminate the age-related changes of the balance control and the recovery ability. Twenty older adults and 20 healthy young adults participated in the study. The subjects stood barefoot on the novel movable platform, data of the center of mass (COM) excursion, joint rotation angle and electromyography (EMG) were recorded and compared. The results showed that the older adults had similar patterns of joint movement and COM excursion as the young adults during the balance reactive-recovery. However, larger proximal joint rotation in elderly group induced larger COM sway envelop and therefore loss of the compensatory strategy of posture recovery. The old adults also presented a lower muscle power. In order to keep an adequate joint stability preventing from falling, the EMG activity was increased, but the asymmetric pattern might be the key reason of unstable postural response. This novel design of moveable platform and test protocol comprised the computerized dynamic posturography (CDP) demonstrate its value to assess the possible sensory, motor, and central adaptive impairments to balance control and could be the training tool for posture inability person.  相似文献   

14.
In the literature, analysis of dynamic gait stability using the extrapolated center of mass concept is often an objective that assumes reproducible and symmetrical data. Here, we examined the validity of this assumption by analyzing subjects walking at different velocities. Eleven healthy young subjects walked on a treadmill at six different velocities (1.0-2.0m·s(-1)). Dynamic stability at touchdown of the left and right foot (10 gait trials for each body side) was investigated by using the margin of stability, determined as the difference between base of support and extrapolated center of mass. Dynamic stability parameters showed no significant differences (P>0.05) between gait trials, with a root mean square difference in margin of stability of less than 1.62cm. Correlation coefficients between trials were above 0.70 for all parameters, demonstrating that two gait trials are sufficient to obtain reproducible data. In more than 90% of the cases, the absolute symmetry index was below 8% with no relevant functional differences between body sides. We concluded that analyzing two gait trials for one body side is sufficient to determine representative characteristics of the components of dynamic stability in healthy young adults while walking on the treadmill at a wide range of velocities.  相似文献   

15.
Predicted threshold against backward balance loss following a slip in gait   总被引:1,自引:1,他引:0  
The purpose of this study was to use a 7-link, moment-actuated human model to predict, at liftoff of the trailing foot in gait, the threshold of the center of mass (COM) velocity relative to the base of support (BOS) required to prevent backward balance loss during single stance recovery from a slip. Five dynamic optimization problems were solved to find the minimum COM velocities that would allow the simulation to terminate with the COM above the BOS when the COM started 0.25, 0.5, 0.75, 1.0, and 1.25 foot lengths behind the heel of the stance foot (i.e., behind the BOS). The initial joint angles of the model were based on averaged data from experimental trials. Foot-ground contact was modeled using 16 visco-elastic springs distributed under the stance foot. Slipping was modeled by setting the sliding coefficient of friction of these springs to 0.02. The forward velocity of the COM necessary to avoid a backward balance loss is nearly two times larger under slip conditions under non-slip conditions. The predicted threshold for backward balance loss following a slip agreed well with experimental data collected from 99 young adults in response to 927 slips during walking. In all trials in which a subject's COM had a velocity below the predicted threshold, the subject's recovery foot landed posterior to the slipping foot as predicted. Finally, combining experimental data with optimization, we verified that the 7-link model could more accurately predict gait stability than a 2-link model.  相似文献   

16.
We studied the effects of a concurrent cognitive task on predictive motor control, a feedforward mechanism of dynamic stability control, during disturbed gait in young and old adults. Thirty-two young and 27 elderly male healthy subjects participated and were randomly assigned to either control or dual task groups. By means of a covered exchangeable element the surface condition on a gangway could be altered to induce gait perturbations. The experimental protocol included a baseline on hard surface and an adaptation phase with twelve trials on soft surface. After the first, sixth and last soft surface trial, the surface condition was changed to hard (H1-3), to examine after-effects and, thus, to quantify predictive motor control. Dynamic stability was assessed using the 'margin of stability (MoS)' as a criterion for the stability state of the human body (extrapolated center of mass concept). In H1-3 the young participants significantly increased the MoS at touchdown of the disturbed leg compared to baseline. The magnitude and the rate of these after-effects were unaffected by the dual task condition. The old participants presented a trend to after-effects (i.e., increase of MoS) in H3 but only under the dual task condition.In conclusion, the additional cognitive demand did not compromise predictive motor control during disturbed walking in the young and old participants. In contrast to the control group, the old dual task group featured a trend to predictive motor adjustments, which may be a result of a higher state of attention or arousal due to the dual task paradigm.  相似文献   

17.
Lower-limb amputees have a higher risk of falling compared to non-amputees. Proper regulation of whole-body angular momentum is necessary to prevent falls, particularly in the frontal plane where individuals are most unstable. However, the balance recovery mechanisms used by lower-limb amputees when recovering from a perturbation are not well-understood. This study sought to understand the balance recovery mechanisms used by lower-limb amputees in response to mediolateral foot perturbations by examining changes to frontal plane whole-body angular momentum and hip joint work. These metrics provide a quantitative measure of frontal plane dynamic balance and associated joint contributions required to maintain balance during gait. Nine amputees and 11 non-amputees participated in this study where an unexpected medial or lateral foot placement perturbation occurred immediately prior to heel strike on the residual, sound or non-amputee limbs. Lateral perturbations of all limbs resulted in a reduced range of whole-body angular momentum and increased positive frontal plane hip work in the first half of single limb support. Medial perturbations for all limbs resulted in increased range of whole-body angular momentum and decreased positive frontal plane hip work, also in the first half of single limb support. These results suggest that medial foot placement perturbations are particularly challenging and that hip strategies play an important role in balance recovery. Thus, rehabilitation interventions that focus on hip muscles that regulate mediolateral balance, particularly the hip abductors, and the use of prostheses with active ankle control, may reduce the risk of falls.  相似文献   

18.
Walking on an irregular surface is associated with an elevated risk for a fall at any age. Yet, relatively little is known about how a human responds to an unexpected underfoot perturbation during gait. This is partly due to the difficulty of generating an intermittent but repeatable, unexpected, underfoot perturbation whose size and location are precisely known. So we developed a shoe sole-embedded apparatus for randomly perturbing the stance phase of gait. Medial and lateral flaps were concealed in the soles of pairs of sandals, along with their actuators. Either flap could be deployed within 400ms in the parasagittal plane under a swing foot; this altered the resulting sagittal and frontal plane orientations of the foot during the next stance phase, whereafter the flap was retracted following toe-off for the rest of that gait trial. We tested six healthy young subjects by randomly presenting a single medial or lateral perturbation in 12 of 30 gait trials. Traditional step kinematic measures were used to evaluate the test-retest reliability of the response to the stimulus at two different walking speeds in 60 randomized trials conducted 1 week apart. The method was effective in systematically inducing an alteration in gait, reproducible across visits, as evidenced by acceptable intraclass correlation coefficients for step width, time and length. We conclude that the apparatus and method has potential for measuring the ability of humans to reject one or more unexpected underfoot perturbations during gait.  相似文献   

19.
Recovery from a large perturbation, such as a slip, can be successful when stability of movement can be reestablished with protective stepping. Nevertheless, one dilemma for executing a protective step is that its liftoff can weaken support against limb collapse. This study investigated whether failures in limb support leading to falls after a protective step result from insufficient joint moment generation, and whether such insufficiency is greater among older fallers. A novel, unexpected slip was induced immediately following seat-off during a sit-to-stand. Joint work and mechanical energy were calculated for 43 young (9 falls, 34 recoveries) and 22 older (13 falls, 9 recoveries) adults who responded with a protective step. Comparisons of the work produced at three joints of the bilateral lower limbs revealed that insufficient concentric knee and hip extensor work prior to step liftoff was a primary differentiating factor between falling and recovery, regardless of age. Also, during stepping, fallers regardless of age failed to limit the eccentric knee extensor work at their stance limb sufficiently to retard rapid knee flexion and the consequent potential energy loss. We concluded that young and older fallers had comparable weak limb support. The greater fall incidence among the older adults likely resulted from a greater proportion of subjects who responded to the slip with insufficient knee extensor support, possibly attributable to age-differences in chair-rising. One strategy to address this dilemma may rely on task-specific training to enhance feedforward control that improves movement stability, and thus lessens the reliance on protective stepping.  相似文献   

20.
Yang F  Bhatt T  Pai YC 《Journal of biomechanics》2011,44(15):2607-2613
Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号