首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThere are currently two approaches to hypothermic preservation for most solid organs: static or dynamic. Cold storage is the main method used for static storage (SS), while hypothermic pulsatile perfusion (HPP) and other machine perfusion-based methods, such as normothermic machine perfusion and oxygen persufflation, are the methods used for dynamic preservation. HPP is currently approved for kidney transplantation.MethodsWe evaluated, for the first time, the feasibility of HPP on 11 human pancreases contraindicated for clinical transplantation because of advanced age and/or history of severe alcoholism and/or abnormal laboratory tests. Two pancreases were used as SS controls, pancreas splitting was performed on 2 other pancreases for SS and HPP and 7 pancreases were tested for HPP. HPP preservation lasted 24 h at 25 mmHg. Resistance index was continuously monitored and pancreas and duodenum histology was evaluated every 6 h.ResultsThe main finding was the complete absence of edema of the pancreas and duodenum at all time-points during HPP. Insulin, glucagon and somatostatin staining was normal. Resistance index decreased during the first 12 h and remained stable thereafter.Conclusion24 h hypothermic pulsatile perfusion of marginal human pancreas-duodenum organs was feasible with no deleterious parenchymal effect. These observations encourage us to further develop this technique and evaluate the safety of HPP after clinical transplantation.  相似文献   

2.
In this study, we investigated the causal relationship between chronic cold exposure and insulin resistance and the mechanisms of how DNA methylation and histone deacetylation regulate cold-reduced insulin resistance. 46 adult male mice from postnatal day 90–180 were randomly assigned to control group and cold-exposure group. Mice in cold-exposure group were placed at temperature from -1 to 4 °C for 30 days to mimic chronic cold environment. Then, fasting blood glucose, blood insulin level and insulin resistance index were measured with enzymatic methods. Immunofluorescent labeling was carried out to visualize the insulin receptor substrate 2 (IRS2), Obese receptor (Ob-R, a leptin receptor), voltage-dependent anion channel protein 1 (VDAC1), cytochrome C (cytC), 5-methylcytosine (5-mC) positive cells in hippocampal CA1 area. Furthermore, the expressions of some proteins mentioned above were detected with Western blot. The results showed: ① Chronic cold exposure could reduce the insulin resistance index (P < 0.01) and increase the number of IRS2 positive cells and Ob-R positive cells in hippocampus (P < 0.01). ② The expressions of mitochondrial energy-relative proteins, VDAC1 and cytC, were higher in cold-exposure group than in control group with both immunohistochemical staining and Western blot (P < 0.01). ③ Chronic cold exposure increased DNA methylation and histone deacetylation in the pyramidal cells of CA1 area and led to an increase in the expression of histone deacetylase 1 (HDAC1) and DNA methylation relative enzymes (P < 0.01). In conclusion, chronic cold exposure can improve insulin sensitivity, with the involvement of DNA methylation, histone deacetylation and the regulation of mitochondrial energy metabolism. These epigenetic modifications probably form the basic mechanism of cold-reduced insulin resistance.  相似文献   

3.
The aim of this study was to investigate the impact of prolonged storage at 4 °C on survival of cat preantral follicles (PAFs) pre- and post-vitrification. Ovaries were obtained from 12 queens and transported at 4 ºC within 2–6 h. Parts of the ovaries were stored for an additional 24 h or 72 h. The ovarian cortex was dissected, analyzed for viability (neutral red - NR) and morphology (histology - HE and ultrastructural analysis by TEM) and vitrified. We used 2 mm biopsy punches to obtain equal size pieces as the experimental units. After NR assessment, each sample was fixed and embedded in paraffin for HE staining to determine the number of morphologically intact follicles. Another 2 mm piece of ovary was subjected to TEM. NR viability assessment and HE results showed a similar tendency with PAF survival postvitrification even after prolonged cooling at 24 h and 72 h. With TEM, integrity of mitochondria, plasma and basal membranes as well as the presence of pre-granulose cells of PAFs were documented postvitrification for the control group and 24 h prolonged storage group, but not after 72 h storage. Our results showed that cat PAFs can survive prolonged storage followed by vitrification. The described set of techniques are applicable towards creating a gamete bank for endangered feline species.  相似文献   

4.
5.
《Cryobiology》2016,73(3):210-215
Several methods are currently available for selection when conducting sperm cryopreservation, however, these methods might cause different degrees of damage on sperm DNA. The aim of the this study is to compare the effects of storage at −80 °C (in ultra-low temperature refrigerator) and at −196 °C (in liquid nitrogen) on sperm DNA damage, thus to provide a reference for choosing the right method according to different aims. We randomly collected 28 semen samples from college students of Chongqing city. The samples stored at −80 °C were neat semen samples and the samples stored at −196 °C were mixed with additional cryoprotectants. Each sample was subjected to two freezing-thawing cycles, and the sperm DNA damage levels of fresh and thawed samples were measured by single cell gel electrophoresis (SCGE) and sperm chromatin structure assay (SCSA). Both SCGE and SCSA assays showed cryopreservation induced significant damage to sperm DNA. However, storage at −196 °C lead to more severe damage to sperm DNA than storage at −80 °C measured by SCSA. Sperm DNA damage increased simultaneously with the higher frequency of freezing-thawing cycles. We concluded that storage of neat semen samples at −80 °C had milder damage to sperm DNA than storage at −196 °C mixed with cryoprotectants. To avoid additional sperm DNA damage, repeated freezing and thawing should be prevented.  相似文献   

6.
《Journal of molecular biology》2019,431(24):4922-4940
The retroviral envelope-derived proteins syncytin-1 and syncytin-2 (syn1 and syn2) drive placentation in humans by forming a syncytiotophoblast, a structure allowing for an exchange interface between maternal and fetal blood during pregnancy. Despite their essential role, little is known about the molecular mechanism underlying the syncytins' function. We report here the X-ray structures of the syn1 and syn2 transmembrane subunit ectodomains, featuring a 6-helix bundle (6HB) typical of the post-fusion state of gamma-retrovirus and filovirus fusion proteins. Contrary to the filoviruses, for which the fusion glycoprotein was crystallized both in the post-fusion and in the spring-loaded pre-fusion form, the highly unstable nature of the syncytins' prefusion form has precluded structural studies. We undertook a proline-scanning approach searching for regions in the syn1 6HB central helix that tolerate the introduction of helix-breaker residues and still fold correctly in the pre-fusion form. We found that there is indeed such a region, located two α-helical turns downstream a stutter in the central coiled-coil helix - precisely where the breaks of the spring-loaded helix of the filoviruses map. These mutants were fusion-inactive as they cannot form the 6HB, similar to the “SOSIP” mutant of HIV Env that allowed the high-resolution structural characterization of its labile pre-fusion form. These results now open a new window of opportunity to engineer more stable variants of the elusive pre-fusion trimer of the syncytins and other gamma-retroviruses envelope proteins for structural characterization.  相似文献   

7.
8.
The architecture of the outer body wall cuticle is fundamental to protect arthropods against invading pathogens and numerous other harmful stresses. Such robust cuticles are formed by parallel running chitin microfibrils. Molting and also local wounding leads to dynamic assembly and disassembly of the chitin-matrix throughout development. However, the underlying molecular mechanisms that organize proper chitin-matrix formation are poorly known. Recently we identified a key region for cuticle thickening at the apical cell surface, the cuticle assembly zone, where Obstructor-A (Obst-A) coordinates the formation of the chitin-matrix. Obst-A binds chitin and the deacetylase Serpentine (Serp) in a core complex, which is required for chitin-matrix maturation and preservation. Here we present evidence that Chitinase 2 (Cht2) could be essential for this molecular machinery. We show that Cht2 is expressed in the chitin-matrix of epidermis, trachea, and the digestive system. There, Cht2 is enriched at the apical cell surface and the dense chitin-matrix. We further show that in Cht2 knockdown larvae the assembly zone is rudimentary, preventing normal cuticle formation and pore canal organization. As sequence similarities of Cht2 and the core complex proteins indicate evolutionarily conserved molecular mechanisms, our findings suggest that Cht2 is involved in chitin formation also in other insects.  相似文献   

9.
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.  相似文献   

10.
Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFNγ signaling and has been implicated in the regulation of liver fibrosis. However, it is not known whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via modulating IFNγ, which has been implicated in attenuating hepatic fibrosis. Additionally, it is possible that SOCS1 controls liver fibrosis by regulating hepatic stellate cells (HSC), a key player in fibrogenic response. While the activation pathways of HSCs have been well characterized, the regulatory mechanisms are not yet clear. The goals of this study were to dissociate IFNγ-dependent and SOCS1-mediated regulation of hepatic fibrogenic response, and to elucidate the regulatory functions of SOCS1 in HSC activation. Liver fibrosis was induced in Socs1−/−Ifng−/− mice with dimethylnitrosamine or carbon tetrachloride. Ifng−/− and C57BL/6 mice served as controls. Following fibrogenic treatments, Socs1−/−Ifng−/− mice showed elevated serum ALT levels and increased liver fibrosis compared to Ifng−/− mice. The latter group showed higher ALT levels and fibrosis than C57BL/6 controls. The livers of SOCS1-deficient mice showed bridging fibrosis, which was associated with increased accumulation of myofibroblasts and abundant collagen deposition. SOCS1-deficient livers showed increased expression of genes coding for smooth muscle actin, collagen, and enzymes involved in remodeling the extracellular matrix, namely matrix metalloproteinases and tissue inhibitor of metalloproteinases. Primary HSCs from SOCS1-deficient mice showed increased proliferation in response to growth factors such as HGF, EGF and PDGF, and the fibrotic livers of SOCS1-deficient mice showed increased expression of the Pdgfb gene. Taken together, these data indicate that SOCS1 controls liver fibrosis independently of IFNγ and that part of this regulation may occur via regulating HSC proliferation and limiting growth factor availability.  相似文献   

11.
12.
《Journal of molecular biology》2019,431(24):4959-4977
The rabies and Ebola viruses recruit the highly conserved host protein LC8 for their own reproductive success. In vivo knockouts of the LC8 recognition motif within the rabies virus phosphoprotein (RavP) result in completely nonlethal viral infections. In this work, we examine the molecular role LC8 plays in viral lethality. We show that RavP and LC8 colocalize in rabies infected cells, and that LC8 interactions are essential for efficient viral polymerase functionality. NMR, SAXS, and molecular modeling demonstrate that LC8 binding to a disordered linker adjacent to an endogenous dimerization domain results in restrictions in RavP domain orientations. The resulting ensemble structure of RavP-LC8 tetrameric complex is similar to that of a related virus phosphoprotein that does not bind LC8, suggesting that with RavP, LC8 binding acts as a switch to induce a more active conformation. The high conservation of the LC8 motif in Lyssavirus phosphoproteins and its presence in other analogous proteins such as the Ebola virus VP35 evinces a broader purpose for LC8 in regulating downstream phosphoprotein functions vital for viral replication.  相似文献   

13.
Bilins, derived from biliverdin IXα, are known from animals, plants and microorganisms, where they play vital roles as light-absorbing pigments. Bilins occur also in many insects. Recently, we discovered in insects a novel structural type of bilins with a farnesyl substituent at pyrrole ring A of biliverdin IXα. The first of these unusual bilins with a molecular mass of 852 (C48H60O10N4) was identified in Cerura vinula, subsequently in Spodoptera littoralis; both species are members of the Noctuoidea superfamily of moths. From an evolutionary point of view, it was of interest to examine other species and families of this monophyletic clade. Here, we show that other moths species in this clade (three Notodontidae species, one Erebidae species, and one Noctuidae species) have farnesylated biliverdins IXα that are present as a mixture of three bilins, differing by the number of oxygen atoms (O8-10). These bilins are associated with typical hemolymph storage proteins, which were identified by mass spectroscopic sequencing of tryptic peptides as arylphorins (a class of 500-kDa hexamerins) in the Notodontidae and Erebidae families, and as 350-kDa very high-density lipoproteins in the Noctuidae family. Circular dichroism spectroscopy revealed that the bilins adopt opposite conformations in complex with the two different classes of proteins. At present, farnesylated biliverdins and IXα-isomers of bilins in general are known only from species of the Noctuoidea clade; the sister clades of Bombycoidea and Papilionoidea synthesise the IXγ-isomer of biliverdin and derivatives thereof.  相似文献   

14.
15.
16.
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65–70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.  相似文献   

17.
Hexamerins are large hemolymph-proteins that accumulate during the late larval stages of insects. Hexamerins have emerged from hemocyanin, but have lost the ability to bind oxygen. Hexamerins are mainly considered as storage proteins for non-feeding stages, but may also have other functions, e.g. in cuticle formation, transport and immune response. The genome of the hornworm Manduca sexta harbors six hexamerin genes. Two of them code for arylphorins (Msex2.01690, Msex2.15504) and two genes correspond to a methionine-rich hexamerin (Msex2.10735) and a moderately methionine-rich hexamerin (Msex2.01694), respectively. Two other genes do not correspond to any known hexamerin and distantly resemble the arylphorins (Msex2.01691, Msex2.01693). Five of the six hexamerin genes are clustered within ∼45 kb on scaffold 00023, which shows conserved synteny in various lepidopteran genomes. The methionine-rich hexamerin gene is located at a distinct site. M. sexta and other Lepidoptera have lost the riboflavin-binding hexamerin. With the exception of Msex2.01691, which displays low mRNA levels throughout the life cycle, all hexamerins are most highly expressed during pre-wandering phase of the 5th larval instar of M. sexta, supporting their role as storage proteins. Notably, Msex2.01691 is most highly expressed in the brain, suggesting a divergent function. Phylogenetic analyses showed that hexamerin evolution basically follows insect systematics. Lepidoptera display an unparalleled diversity of hexamerins, which exceeds that of other hexapod orders. In contrast to previous analyses, the lepidopteran hexamerins were found monophyletic. Five distinct types of hexamerins have been identified in this order, which differ in terms of amino acid composition and evolutionary history: i. the arylphorins, which are rich in aromatic amino acids (∼20% phenylalanine and tyrosine), ii. the distantly related arylphorin-like hexamerins, iii. the methionine-rich hexamerins, iv. the moderately methionine rich hexamerins, and v. the riboflavin-binding hexamerins.  相似文献   

18.
C-type lectins (CTLs) are a large family of Ca2+-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca2+-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.  相似文献   

19.
Tissue damage or pathogen invasion triggers the auto-proteolysis of an initiating serine protease (SP), rapidly leading to sequential cleavage activation of other cascade members to set off innate immune responses in insects. Recently, we presented evidence that Manduca sexta hemolymph protease-1 zymogen (proHP1) is a member of the SP system in this species, and may activate proHP6. HP6 stimulates melanization and induces antimicrobial peptide synthesis. Here we report that proHP1 adopts an active conformation (*) to carry out its function, without a requirement for proteolytic activation. Affinity chromatography using HP1 antibodies isolated from induced hemolymph the 48 kDa proHP1 and also a 90 kDa band (detected by SDS-PAGE under reducing conditions) containing proHP1 and several serpins, as revealed by mass spectrometric analysis. Identification of tryptic peptides from these 90 kDa complexes included peptides from the amino-terminal regulatory part of proHP1, indicating that proHP1* was not cleaved, and that it had formed a complex with the serpins. As suicide inhibitors, serpins form SDS-stable, acyl-complexes when they are attacked by active proteases, indicating that proHP1* was catalytically active. Detection of M. sexta serpin-1, 4, 9, 13 and smaller amounts of serpin-3, 5, 6 in the complexes suggests that it is regulated by multiple serpins in hemolymph. We produced site-directed mutants of proHP1b for cleavage by bovine blood coagulation factor Xa at the designed proteolytic activation site, to generate a form of proHP1b that could be activated by Factor Xa. However, proHP1b cut by Factor Xa failed to activate proHP6 and, via HP6, proHP8 or proPAP1. This negative result is consistent with the suggestion that proHP1* is a physiological mediator of immune responses. Further research is needed to investigate the conformational change that results in conversion of proHP1 to active proHP1*.  相似文献   

20.
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号