首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Alignment of the body in typical symmetrical standing was studied by photographing fifteen subjects in profile on a reaction board. Two aspects of alignment were studied: (1) the anteroposterior position of the body landmarks of knee joint, hip joint, shoulder joint, and ear, compared to the ankle joint; and (2) the positions of the partial centers of gravity above the knee and hip, as a measure of how the body is balanced above these joints. The knee, hip, shoulder, and ear were forward of the ankle in all subjects. On average, the knee was 3.8 (+/- 2.0), the hip 6.2 (+/- 1.3) the shoulder 3.8 (+/- 1.9), and the ear 5.9 (+/- 1.6) cm (+/-S.D.) anterior to the ankle. The positions of landmarks were positively correlated with one another but not highly. The position of the center of gravity could be predicted well from the positions of the landmarks within individual subjects' data, but not across subjects. The centers of gravity above the knee and hip were calculated by subtracting the mass and position of the segments below the joint from the whole-body center of gravity. The center of gravity above the knee was located on average 1.4 (+/- 1.1) cm in front of the joint, and that of the hip 1.0 (+/- 1.6) cm behind the trochanter. Thus, at both knee and hip in typical standing, there exist slight gravitational torques tending to extend the joints.  相似文献   

2.
3.
Repeatability of traditional kinematic and kinetic models is affected by the ability to accurately locate anatomical landmarks (ALs) to define joint centres and anatomical coordinate systems. Numerical methods that define joint centres and axes of rotation independent of ALs may also improve the repeatability of kinematic and kinetic data. The purpose of this paper was to compare the repeatability of gait data obtained from two models, one based on ALs (AL model), and the other incorporating a functional method to define hip joint centres and a mean helical axis to define knee joint flexion/extension axes (FUN model). A foot calibration rig was also developed to define the foot segment independent of ALs. The FUN model produced slightly more repeatable hip and knee joint kinematic and kinetic data than the AL model, with the advantage of not having to accurately locate ALs. Repeatability of the models was similar comparing within-tester sessions to between-tester sessions. The FUN model may also produce more repeatable data than the AL model in subject populations where location of ALs is difficult. The foot calibration rig employed in both the AL and FUN model provided an easy alternative to define the foot segment and obtain repeatable data, without accurately locating ALs on the foot.  相似文献   

4.
This paper aims at contributing to the understanding of the combination of in vivo sternum displacement, sternal angle variations and sternocostal joints (SCJ) kinematics of the seven first rib pairs over the inspiratory capacity (IC). Retrospective codified spiral-CT data obtained at total lung capacity (TLC), middle of inspiratory capacity (MIC) and at functional residual capacity (FRC) were used to compute kinematic parameters of the bones and joints of interest in a sample of 12 asymptomatic subjects. 3D models of rib, thoracic vertebra, manubrium and sternum were processed to determine anatomical landmarks (ALs) on each bone. These ALs were used to create local coordinate system and compute spatial transformation of ribs and manubrium relative to sternum, and sternum relative to thoracic vertebra. The rib angular displacements and associated orientation of rotation axes and joint pivot points (JPP), the sternal angle variations and the associated displacement of the sternum relative to vertebra were computed between each breathing pose at the three lung volumes. Results can be summarized as following: (1) sternum cephalic displacement ranged between 17.8 and 19.2 mm over the IC; (2) the sternal angle showed a mean variation of 4.4° ± 2.7° over the IC; (3) ranges of rib rotation relative to sternum decreased gradually with increasing rib level; (4) axes of rotation were similarly oriented at each SCJ; (5) JPP spatial displacements showed less variations at first SCJ compared to levels underneath; (6) linear relation was demonstrated between SCJ ROMs and sternum cephalic displacement over the IC.  相似文献   

5.
Motion analysis of the lower extremities usually requires determination of the location of the hip joint center. The results of several recent studies have suggested that kinematic and kinetic variables calculated from motion analysis data are highly sensitive to errors in hip joint center location. "Functional" methods in which the location of the hip joint center is determined from the relative motion of the thigh and pelvis, rather than from the locations of bony landmarks, are promising but may be ineffective when motion is limited. The aims of the present study were to determine whether the accuracy of the functional method is compromised in young and elderly subjects when limitations on hip motion are imposed and to investigate the possibility of locating the hip joint center using data collected during commonly studied motions (walking, sit-to-stand, stair ascent, stair descent) rather than using data from an ad hoc trial in which varied hip motions are performed. The results of the study suggested that functional methods would result in worst-case hip joint center location errors of 26mm (comparable to the average errors previously reported for joint center location based on bony landmarks) when available hip motion is substantially limited. Much larger errors ( approximately 70mm worst-case), however, resulted when hip joint centers were located from data collected during commonly performed motions, perhaps because these motions are, for the most part, restricted to the sagittal plane. It appears that the functional method can be successfully implemented when range of motion is limited but still requires collection of a special motion trial in which hip motion in both the sagittal and frontal planes is recorded.  相似文献   

6.
Measuring three-dimensional (3D) forearm rotational motion is difficult. We aimed to develop and validate a new method for analyzing 3D forearm rotational motion. We proposed biplane fluoroscopic intensity-based 2D–3D matching, which employs automatic registration processing using the evolutionary optimization strategy. Biplane fluoroscopy was conducted for forearm rotation at 12.5 frames per second along with computed tomography (CT) at one static position. An arm phantom was embedded with eight stainless steel spheres (diameter, 1.5 mm), and forearm rotational motion measurements using the proposed method were compared with those using radiostereometric analysis, which is considered the ground truth. As for the time resolution analysis, we measured radiohumeral joint motion in a patient with posterolateral rotatory instability and compared the 2D–3D matching method with the simulated multiple CT method, which uses CTs at multiple positions and interpolates between the positions. Rotation errors of the radius and ulna between these two methods were 0.31 ± 0.35° and 0.32 ± 0.33°, respectively, translation errors were 0.43 ± 0.35 mm and 0.29 ± 0.25 mm, respectively. Although the 2D–3D method could detect joint dislocation, the multiple CT method could not detect quick motion during joint dislocation. The proposed method enabled high temporal- and spatial-resolution motion analyses with low radiation exposure. Moreover, it enabled the detection of a sudden motion, such as joint dislocation, and may contribute to 3D motion analysis, including joint dislocation, which currently cannot be analyzed using conventional methods.  相似文献   

7.
Accurate spatial location of joint center (JC) is a key issue in motion analysis since JC locations are used to define standardized anatomical frames, in which results are represented. Accurate and reproducible JC location is important for data comparison and data exchange. This paper presents a method for JC locations based on the multiple regression algorithms without preliminary assumption on the behavior of the joint-of-interest. Regression equations were obtained from manually palpable ALs on each bone-of-interest. Results are presented for all joint surfaces found on the clavicle, scapula and humeral bone. Mean accuracy errors on the JC locations obtained on dry bones were 5.2±2.5 mm for the humeral head, 2.5±1.1 mm for the humeral trochlea, 2.3±0.9 mm for the humeral capitulum, 8.2±3.9 mm for the scapula glenoid cavity, 7.2±3.2 mm for the scapular aspect of the acromio-clavicular joint, 3.5±1.8 mm for the clavicular aspect of the sternoclavicular joint and 3.2±1.4 mm for the clavicular aspect of the acromio-clavicular joint. In-vitro and in-vivo validation accuracy was 5.3 and 8.5 mm, respectively, for the humeral head center location. Regression coefficients for joint radius dimension and joint surface orientation were also processed and reported in this paper.  相似文献   

8.
A method for analysis of back shape in scoliosis   总被引:2,自引:0,他引:2  
The shape of the back is an important factor in the clinical assessment of various spinal disorders, in particular scoliosis. A method of analysis of back surface shape is described which was designed to present most of the numerical parameters needed to assess the progress of the disease as it affects body shape. Measurements of back surface shape and manually marked anatomical landmarks were taken from a television/computer surface measurement system in which a plane of light was scanned over the back and from moiré topographs. The anatomical landmarks were used to define reference planes from which successive analyses were matched. Asymmetry in the transverse plane was illustrated by horizontal cross-sections and skin surface angles. The lateral deformity was shown by an estimate of the line of the vertebral bodies beneath the skin, derived by adding an extra lateral displacement to the palpated positions of the spinous processes, proportional to the rotation of the skin in the transverse plane. This model was used to estimate vertebral end-plate angles and Cobb angles. Lateral sections showed kyphosis and lordosis. Correlations of Lateral Asymmetry from the surface shape analysis with Cobb angle from X-ray measurements in three groups of patients (totalling 119 subjects) were in the range r = 0.77 to r = 0.94, p less than 0.0001. The analysis has reduced follow-up X-ray examinations at the Nuffield Orthopaedic Centre because it indicates quantitatively and with complete safety both lateral asymmetry and deformity in the transverse plane.  相似文献   

9.
Identification of the centre of the glenohumeral joint (GHJ) is essential for three-dimensional (3D) upper limb motion analysis. A number of convenient, yet un-validated methods are routinely used to estimate the GHJ location in preference to the International Society of Biomechanics (ISB) recommended methods. The current study developed a new regression model, and simple 3D offset method for GHJ location estimation, employing easy to administer measures, and compared the estimates with the known GHJ location measured with magnetic resonance imaging (MRI). The accuracy and reliability of the new regression and simple 3D offset techniques were compared with six established predictive methods. Twenty subjects wore a 3D motion analysis marker set that was also visible in MRI. Immediately following imaging, they underwent 3D motion analysis acquisition. The GHJ and anatomical landmark positions of 15 participants were used to determine the new regression and simple 3D generic offset methods. These were compared for accuracy with six established methods using 10 subject's data. A cross validation on 5 participants not used for regression model development was also performed. Finally, 10 participants underwent a further two MRI's and subsequent 3D motion analysis analyses for inter-tester and intra-tester reliability quantification. When compared with any of the other established methods, our newly developed regression model found an average GHJ location closer to the actual MRI location, having an GHJ location error of 13±2 mm, and had significantly lower inter-tester reliability error, 6±4 mm (p<0.01).  相似文献   

10.
Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked – and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité – Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ± 1.0 mm, lateral 7.5 ± 1.6 mm), and the lowest during stand-to-sit (medial 4.5 ± 1.1 mm, lateral 3.7 ± 1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.  相似文献   

11.
Inverse dynamics is a standard approach for estimating joint loadings in the lower extremity from kinematic and ground reaction data for use in clinical and research gait studies. Variability in estimating body segment parameters and uncertainty in defining anatomical landmarks have the potential to impact predicted joint loading. This study demonstrates the application of efficient probabilistic methods to quantify the effect of uncertainty in these parameters and landmarks on joint loading in an inverse-dynamics model, and identifies the relative importance of the parameters and landmarks to the predicted joint loading. The inverse-dynamics analysis used a benchmark data set of lower-extremity kinematics and ground reaction data during the stance phase of gait to predict the three-dimensional intersegmental forces and moments. The probabilistic analysis predicted the 1-99 percentile ranges of intersegmental forces and moments at the hip, knee, and ankle. Variabilities, in forces and moments of up to 56% and 156% of the mean values were predicted based on coefficients of variation less than 0.20 for the body segment parameters and standard deviations of 2 mm for the anatomical landmarks. Sensitivity factors identified the important parameters for the specific joint and component directions. Anatomical landmarks affected moments to a larger extent than body segment parameters. Additionally, for forces, anatomical landmarks had a larger effect than body segment parameters, with the exception of segment masses, which were important to the proximal-distal joint forces. The probabilistic modeling approach predicted the range of possible joint loading, which has implications in gait studies, clinical assessments, and implant design evaluations.  相似文献   

12.
This paper reports the changes in spinal shape resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. The objective is to test the hypothesis that the type of spinal instrumentation system (Cotrel-Dubousset versus Colorado) does not influence these motion parameters. Intervertebral rotations and centers of rotation of the scoliotic spines were computed from the pre- and post-operative radiographs of 82 patients undergoing spinal correction. The three-dimensional (3D) reconstruction of six anatomical landmarks was achieved for each of the thoracic and lumbar vertebrae. A least-squares approach based on singular value decomposition was used to calculate the rigid body transformation parameters. Average centers of rotation for all intervertebral levels are located in the neural canal at the mid-sagittal plane and approximately at the superior endplate level of the inferior vertebra. Intervertebral rotations have components in all planes: 6.7 degrees (frontal), 5.5 degrees (sagittal) and 4.5 degrees (transverse) RMS for all intervertebral levels. Nearly all intervertebral rotations and centers of rotation are not significantly different for the two instrumentation systems. Various intervertebral rotations and 3D reconstruction errors were simulated on a theoretical model of a lumbar functional unit to assess the proposed method. Intervertebral rotation errors were 1.7 degrees when simulating 3D errors of 3mm on the position of the landmarks. Maximum errors for the position of centers of rotation were below 1cm in the case of intervertebral rotations larger than 2.5 degrees (most cases), but were larger (38 mm) for small intervertebral rotations (<1 degrees ). The type of instrumentation system did not influence intervertebral rotations and centers of rotation. These results provide valuable data for the development and validation of simulation models for surgical instrumentation of idiopathic scoliosis.  相似文献   

13.
The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5mm for 3D curvilinear path calculations, 0.05mm for 3D linear distance calculations and 0.2 degrees for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable.  相似文献   

14.
We investigated the anatomical organization of glomeruli in the antennal lobes (ALs) of male silkmoths. We reconstructed 10 different ALs and established an identification procedure for individual glomeruli by using size, shape, and position relative to anatomical landmarks. Quantitative analysis of these morphological characteristics supported the validity of our identification strategy. The glomerular organization of the ALs was roughly conserved between different ALs. However, we found individual variations that were reproducibly observed. The combination of a digital atlas with other experimental techniques, such as electrophysiology, optical imaging, and genetics, should facilitate a more in-depth analysis of sensory information processing in silkmoth ALs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Tomoki Kazawa and Shigehiro Namiki contributed equally to this work. This research was supported by Grant-in-Aid for Scientific Research from the Japan Ministry of Education, Culture, Sports, Science, and Technology (area no. 454, to R.K.).  相似文献   

15.
Improvement of joint prostheses is dependent upon information concerning the biomechanical properties of the joint. Radiostereometric analysis (RSA) and electromagnetic techniques have been applied in previous cadaver and in vivo studies on the elbow joint to provide valuable information concerning joint motion axes. However, such information is limited to mathematically calculated positions of the axes according to an orthogonal coordinate system and is difficult to relate to individual skeletal anatomy. The aim of this study was to evaluate the in vivo application of a new fusion method to provide three-dimensional (3D) visualization of flexion axes according to bony landmarks. In vivo RSA data of the elbow joint's flexion axes was combined with data obtained by 3D computed tomography (CT). Results were obtained from five healthy subjects after one was excluded due to an instable RSA marker. The median error between imported and transformed RSA marker coordinates and those obtained in the CT volume was 0.22 mm. Median maximal rotation error after transformation of the rigid RSA body to the CT volume was 0.003 degrees . Points of interception with a plane calculated in the RSA orthogonal coordinate system were imported into the CT volume, facilitating the 3D visualization of the flexion axes. This study demonstrates a successful fusion of RSA and CT data, without significant loss of RSA accuracy. The method could be used for relating individual motion axes to a 3D representation of relevant joint anatomy, thus providing important information for clinical applications such as the development of joint prostheses.  相似文献   

16.
One of the most commonly-referenced studies on body segment masses and centers of mass is by Clauser et al. (AMRL Technical Report 69-70, Wright Patterson Air Force Base, 1969). The Clauser et al. data, however, are difficult to use, because the investigators used certain bony landmarks rather than joint centers as reference points for the center of mass proportions. The purpose of this study was to make adjustments to those proportions so that they could be applied directly to segments having joint centers as endpoints. The segments affected by these adjustments were the trunk, upper arm, forearm, thigh, and calf. These new proportions are markedly different than those originally reported by Clauser et al., especially for the trunk segment. Readers are cautioned against using the original proportions when using joint centers as segment endpoints.  相似文献   

17.
The objective of the study was to develop a framework for the accurate identification of joint centers to be used for the calculation of human body kinematics and kinetics. The present work introduces a method for the functional identification of joint centers using markerless motion capture (MMC). The MMC system used 8 color VGA cameras. An automatic segmentation-registration algorithm was developed to identify the optimal joint center in a least-square sense. The method was applied to the hip joint center with a validation study conducted in a virtual environment. The results had an accuracy (6mm mean absolute error) below the current MMC system resolution (1cm voxel resolution). Direct experimental comparison with marker-based methods was carried out showing mean absolute deviations over the three anatomical directions of 11.9 and 15.3mm if compared with either a full leg or only thigh markers protocol, respectively. Those experimental results were presented only in terms of deviations between the two systems (marker-based and markerless) as no real gold standard was available. The methods presented in this paper provide an important enabling step towards the biomechanical and clinical applications of markerless motion capture.  相似文献   

18.
The glenohumeral joint rotation centre in vivo   总被引:2,自引:0,他引:2  
Within the framework of the current call for standardization in upper extremity research, three methods to determine the glenohumeral joint rotation centre in vivo were tested. Therefore, subjects performed humeral movements, while a 3D electromagnetic tracking device registered the motion of the humerus with respect to the scapula. For the first method to estimate the glenohumeral joint rotation centre five scapular bony landmarks served as input to regression equations. The second method fitted a sphere through the humeral position data and the third method calculated the rotation centre determining an optimal helical axis. The experiment consisted of two parts, at first one subject was measured 10 times, subsequently one observer measured 10 subjects twice and another observer measured these subjects once. The first part of the experiment demonstrated that all methods are capable to reproduce the rotation centre within 4 mm, but the location of the centre differed significantly between methods (p<0.001). The second part, showed that inter- and intra-observer reliability was sufficiently for the sphere-fitting method and for the helical-axes method. The two observations of one observer differed significantly (p<0.008) using the regression method. The authors prefer the helical-axes method, it is a reliable and valid method which can be applied in movement registration of healthy subjects and patients with a shoulder endoprosthesis, it can be applied in hinge joints to determine a rotation axis instead of a rotation centre which is desirable in standardized upper extremity research, and calculation time is short.  相似文献   

19.
A reproducible method for studying three-dimensional knee kinematics   总被引:1,自引:0,他引:1  
The methods used in movement analysis often rely on the definition of joint coordinate systems permitting three-dimensional (3D) kinematics. The first aim of this research project was to present a functional and postural method (FP method) to define a bone-embedded anatomical frame (BAF) on the femur and tibia, and, subsequently, a knee joint coordinate system. The repeatability of the proposed method was also assessed. Using FP method to define the BAFs, 4 kinematic parameters (flexion/extension, abduction/adduction, tibial internal/external rotation, and antero-posterior translation) were computed for 15 subjects walking on a treadmill. The repeatability for all four kinematic parameters was then assessed, using intra- and inter-observer settings. After pooling the results for all observers, the mean repeatability value ranged between 0.4 degrees and 0.8 degrees for rotation angles and between 0.8 and 2.2 mm for translation.  相似文献   

20.
There are many methods used to represent joint kinematics (e.g., roll, pitch, and yaw angles; instantaneous center of rotation; kinematic center; helical axis). Often in biomechanics internal landmarks are inferred from external landmarks. This study represents mandibular kinematics using a non-orthogonal floating axis joint coordinate system based on 3-D geometric models with parameters that are "clinician friendly" and mathematically rigorous. Kinematics data for two controls were acquired from passive fiducial markers attached to a custom dental clutch. The geometric models were constructed from MRI data. The superior point along the arc of the long axis of the condyle was used to define the coordinate axes. The kinematic data and geometric models were registered through fiducial markers visible during both protocols. The mean absolute maxima across the subjects for sagittal rotation, coronal rotation, axial rotation, medial-lateral translation, anterior-posterior translation, and inferior-superior translation were 34.10 degrees, 1.82 degrees, 1.14 degrees, 2.31, 21.07, and 6.95 mm, respectively. All the parameters, except for one subject's axial rotation, were reproducible across two motion recording sessions. There was a linear correlation between sagittal rotation and translation, the dominant motion plane, with approximately 1.5 degrees of rotation per millimeter of translation. The novel approach of combining the floating axis system with geometric models succinctly described mandibular kinematics with reproducible and clinician friendly parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号