首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesAseptic loosening (AL) is the most common reason of total hip arthroplasty (THA) failure and revision surgery. Osteolysis, caused by wear particles released from implant surfaces, has a vital role in AL. Although previous studies suggest that wear particles always lead to osteoblast programmed death in the process of AL, the specific mechanism remains incompletely understood and osteoblast ferroptosis maybe a new mechanism of AL.Materials and MethodsCoCrMo nanoparticles (CoNPs) were prepared to investigate the influence of ferroptosis in osteoblasts and calvaria resorption animal models. Periprosthetic osteolytic bone tissue was collected from patients who underwent AL after THA to verify osteoblast ferroptosis.ResultsOur study demonstrated that CoNPs induced significant ferroptosis in osteoblasts and particles induced osteolysis (PIO) animal models. Blocking ferroptosis with specific inhibitor Ferrostatin‐1 dramatically reduced particle‐induced ferroptosis in vitro. Moreover, in osteoblasts, CoNPs significantly downregulated the expression of Nrf2 (nuclear factor erythroid 2‐related factor 2), a core element in the antioxidant response. The overexpression of Nrf2 by siKeap1 or Nrf2 activator Oltipraz obviously upregulated antioxidant response elements (AREs) and suppressed ferroptosis in osteoblasts. Furthermore, in PIO animal models, the combined utilization of Ferrostatin‐1 and Oltipraz dramatically ameliorated ferroptosis and the severity of osteolysis.ConclusionsThese results indicate that CoNPs promote osteoblast ferroptosis by regulating the Nrf2‐ARE signalling pathway, which suggests a new mechanism underlying PIO and represents a potential therapeutic approach for AL.

CoCrMo‐Nanoparticles induced peri‐implant osteolysis by promoting osteoblast ferroptosis via regulating Nrf2‐ARE signalling pathway. Blocking ferroptosis with Ferrostatin‐1 and Oltipraz significantly ameliorated osteolysis induced by implanted particles, which suggests a new mechanism underlying particle‐induced osteolysis and represents a potential therapeutic approach for aseptic loosening.  相似文献   

2.
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.  相似文献   

3.
Astilbin, an essential component of Rhizoma smilacis glabrae, exerts significant antioxidant and anti‐inflammatory effects against various autoimmune diseases. We have previously reported that astilbin decreases proliferation and improves differentiation of HaCaT keratinocytes in a psoriatic model. The present study was designed to evaluate the potential therapeutic effects of topical administration of astilbin on an imiquimod (IMQ)‐induced psoriasis‐like murine model and to reveal their underlying mechanisms. Topical administration of astilbin at a lower dose alleviated IMQ‐induced psoriasis‐like skin lesions by inducing the differentiation of epidermal keratinocytes in mice, and the therapeutic effect was even better than that of calcipotriol. Moreover, the inflammatory skin disorder was relieved by astilbin treatment characterized by a reduction in both IL‐17‐producing T cell accumulation and psoriasis‐specific cytokine expression in skin lesions. Furthermore, we found that astilbin inhibited R837‐induced maturation and activation of bone marrow‐derived dendritic cells and decreased the expression of pro‐inflammatory cytokines by downregulating myeloid differentiation factor 88. Our findings provide the convincing evidence that lower doses of astilbin might attenuate psoriasis by interfering with the abnormal activation and differentiation of keratinocytes and accumulation of IL‐17‐producing T cells in skin lesions. Our results strongly support the pre‐clinical application of astilbin for psoriasis treatment.  相似文献   

4.
Emerging studies indicate that intracellular eukaryotic ceramide species directly activate cathepsin B (CatB), a lysosomal‐cysteine‐protease, in the cytoplasm of osteoclast precursors (OCPs) leading to elevated RANKL‐mediated osteoclastogenesis and inflammatory osteolysis. However, the possible impact of CatB on osteoclastogenesis elevated by non‐eukaryotic ceramides is largely unknown. It was reported that a novel class of phosphoglycerol dihydroceramide (PGDHC), produced by the key periodontal pathogen Porphyromonas gingivalis upregulated RANKL‐mediated osteoclastogenesis in vitro and in vivo. Therefore, the aim of this study was to evaluate a crosstalk between host CatB and non‐eukaryotic PGDHC on the promotion of osteoclastogenesis. According to a pulldown assay, high affinity between PGDHC and CatB was observed in RANKL‐stimulated RAW264.7 cells in vitro. It was also demonstrated that PGDHC promotes enzymatic activity of recombinant CatB protein ex vivo and in RANKL‐stimulated osteoclast precursors in vitro. Furthermore, no or little effect of PGDHC on the RANKL‐primed osteoclastogenesis was observed in male and female CatB‐knock out mice compared with their wild type counterparts. Altogether, these findings demonstrate that bacterial dihydroceramides produced by Pgingivalis elevate RANKL‐primed osteoclastogenesis via direct activation of intracellular CatB in OCPs.  相似文献   

5.
ObjectivesIn this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)‐induced M2‐phenotype (M2) macrophages and their ability to promote anti‐neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model.MethodsTo this end, compared to the granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), we evaluated whether TUDCA effectively differentiates bone marrow–derived macrophages (BMDMs) into M2 macrophages.ResultsThe M2 expression markers in the TUDCA‐treated BMDM group were increased more than those in the GM‐CSF‐treated BMDM group. After the SCI and transplantation steps, pro‐inflammatory cytokine levels and the mitogen‐activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA‐induced M2 group more than they were in the GM‐CSF‐induced M1 group and in the TUDCA group. Moreover, the TUDCA‐induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM‐CSF‐induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)–labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA‐induced M2 group more than those in the GM‐CSF‐induced M1 group and the TUDCA group.ConclusionsThis study demonstrates that the transplantation of TUDCA‐induced M2 macrophages promotes an anti‐neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA‐induced M2 macrophages represents a possible alternative cell therapy for SCI.  相似文献   

6.
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.  相似文献   

7.
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.  相似文献   

8.
ObjectivesAdiponectin signalling has been considered to be a promising target to treat diabetes‐related osteoporosis. However, contradictory results regarding bone formation were observed due to the various isoforms of adiponectin. Therefore, it would be necessary to investigate the effect of adiponectin receptor signals in regulating bone‐fat balance.Materials and MethodsWe primarily applied a newly found specific activator for adiponectin receptor, AdipoRon, to treat bone metabolism‐related cells to investigate the role of Adiponectin receptor signals on bone‐fat balance. We then established femur defect mouse model and treated them with AdipoRon to see whether adiponectin receptor activation could promote bone regeneration.ResultsWe found that AdipoRon could slightly inhibit the proliferation of pre‐osteoblast and pre‐osteoclast, but AdipoRon showed no effect on the viability of mesenchymal stromal cells. AdipoRon could remarkably promote cell migration of mesenchymal stromal cells. Additionally, AdipoRon promoted osteogenesis in both pre‐osteoblasts and mesenchymal cells. Besides, AdipoRon significantly inhibited osteoclastogenesis via its direct impact on pre‐osteoclast and its indirect inhibition of RANKL in osteoblast. Moreover, mesenchymal stromal stems cells showed obviously decreased adipogenesis when treated with AdipoRon. Consistently, AdipoRon‐treated mice showed faster bone regeneration and repressed adipogenesis.ConclusionsOur study demonstrated a pro‐osteogenic, anti‐adipogenic and anti‐osteoclastogenic effect of adiponectin receptor activation in young mice, which suggested adiponectin receptor signalling was involved in bone regeneration and bone‐fat balance regulation.  相似文献   

9.
Since ancient times, plants have been used as green bioresources to ensure a healthier life by recovering from different diseases. Kattosh (Lasia spinosa L. Thwaites) is a local plant with various traditional uses, especially for arthritis, constipation and coughs. This research investigated the effect of Kattosh stem extract (LSES) on streptozotocin‐induced damage to the pancreas, kidney, and liver using in vitro, in vivo and in silico methods. In vitro phytochemical, antioxidative and anti‐inflammatory effects of LSES were accomplished by established methods followed by antidiabetic actions in in vivo randomized controlled intervention in STZ‐induced animal models for four weeks. In an in silico study, LSES phytocompounds interacted with antidiabetic receptors of peroxisome proliferator‐activated receptor‐gamma (PPAR, PDB ID: 3G9E), AMP‐activated protein kinase (AMPK, PDB ID: 4CFH) and α‐amylase enzyme (PDB ID: 1PPI) to verify the in vivo results. In addition, LSES showed promising in vitro antioxidative and anti‐inflammatory effects. In contrast, it showed a decrease in weekly blood glucose level, normalized lipid profile, ameliorated liver and cardiac markers, managed serum AST and ALT levels, and increased glucose tolerance ability in the animal model study. Restoration of pancreatic and kidney damage was reflected by improving histopathological images. In ligand–receptor interaction, ethyl α‐d‐glucopyranoside of Kattosh showed the highest affinity for the α‐amylase enzyme, PPAR, and AMPK receptors. Results demonstrate that the affinity of Kattosh phytocompounds potentially attenuates pancreatic and kidney lesions and could be approached as an alternative antidiabetic source with further clarification.  相似文献   

10.
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti‐ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN‐007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti‐ELTD1 and OKN‐007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti‐ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti‐ELTD1 was also shown to significantly affect other pro‐angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti‐ELTD1 and OKN treatments did not induce a pro‐migratory phenotype within the tumours. Anti‐ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti‐ELTD1 therapies show promise as potential single‐agent multi‐focal therapies for GBM patients.  相似文献   

11.
ObjectivesNLRP3 inflammasome is a critical part of the innate immune system and plays an important role in a variety of inflammatory diseases. However, the effects of NLRP3 inflammasome on periodontitis have not been fully studied.Materials and methodsWe used ligature‐induced periodontitis models of NLRP3 knockout mice (NLRP3KO) and their wildtype (WT) littermates to compare their alveolar bone phenotypes. We further used Lysm‐Cre/RosanTnG mouse to trace the changes of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis with or without MCC950 treatment. At last, we explored MCC950 as a potential drug for the treatment of periodontitis in vivo and in vitro.ResultsHere, we showed that the number of osteoclast precursors, osteoclast differentiation and alveolar bone loss were reduced in NLRP3KO mice compared with WT littermates, by using ligature‐induced periodontitis model. Next, MCC950, a specific inhibitor of the NLRP3 inflammasome, was used to inhibit osteoclast precursors differentiation into osteoclast. Further, we used Lysm‐Cre/RosanTnG mice to demonstrate that MCC950 decreases the number of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis. At last, treatment with MCC950 significantly suppressed alveolar bone loss with reduced IL‐1β activation and osteoclast differentiation in ligature‐induced periodontitis.ConclusionOur findings reveal that NLRP3 regulates alveolar bone loss in ligature‐induced periodontitis by promoting osteoclastic differentiation.  相似文献   

12.
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2 −/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2 −/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2 −/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis.  相似文献   

13.
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.  相似文献   

14.
Inhalation of crystalline silica causes silicosis, the most common and serious occupational disease, which is characterized by progressive lung inflammation and fibrosis. Recent studies revealed the anti‐inflammatory and anti‐fibrosis role of Caveolin‐1 (Cav‐1) in lung, but this role in silicosis has not been investigated. Thus, this study evaluated Cav‐1 regulatory effects in silicosis. It was found that Cav‐1 levels were significantly reduced in the lung from silicosis patients and silicotic mice. The silicosis models were established in C57BL/6 (wild‐type) and Cav‐1 deficiency (Cav1 −/−) mice, and Cav1 −/− mice displayed wider alveolar septa, increased collagen deposition and more silicotic nodules. The mice peritoneal‐derived macrophages were used to explore the role of Cav‐1 in silica‐induced inflammation, which plays a central role in mechanism of silicosis. Cav‐1 inhibited silica‐induced infiltration of inflammatory cells and secretion of inflammatory factors in vitro and in vivo, partly by downregulating NF‐κB pathway. Additionally, silica uptake and expression of 4‐hydroxynonenal in silicotic mice were observed, and it was found that Cav‐1 absence triggered excessive silica deposition, causing a stronger oxidative stress response. These findings demonstrate the protective effects of Cav‐1 in silica‐induced lung injury, suggesting its potential therapeutic value in silicosis.  相似文献   

15.
Intestinal barrier dysfunction and intestinal inflammation interact in the progression of Crohn''s disease (CD). A recent study indicated that Epac‐2 protected the intestinal barrier and had anti‐inflammatory effects. The present study examined the function of Epac‐2 in CD‐like colitis. Interleukin‐10 gene knockout (Il10 −/−) mice exhibit significant spontaneous enteritis and were used as the CD model. These mice were treated with Epac‐2 agonists (Me‐cAMP) or Epac‐2 antagonists (HJC‐0350) or were fed normally (control), and colitis and intestinal barrier structure and function were compared. A Caco‐2 and RAW 264.7 cell co‐culture system were used to analyse the effects of Epac‐2 on the cross‐talk between intestinal epithelial cells and inflammatory cells. Epac‐2 activation significantly ameliorated colitis in mice, which was indicated by reductions in the colitis inflammation score, the expression of inflammatory factors and intestinal permeability. Epac‐2 activation also decreased Caco‐2 cell permeability in an LPS‐induced cell co‐culture system. Epac‐2 activation significantly suppressed nuclear factor (NF)‐κB/mitogen‐activated protein kinase (MAPK) signalling in vivo and in vitro. Epac‐2 may be a therapeutic target for CD based on its anti‐inflammatory functions and protective effects on the intestinal barrier.  相似文献   

16.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia‐mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)‐induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti‐inflammatory effects of MT1 activation. LPS‐induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS‐treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti‐inflammatory effects of MT1 activation were observed in LPS‐stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS‐induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti‐inflammation.  相似文献   

17.
Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open‐angle glaucoma patients compared to non‐glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti‐apoptotic and anti‐TGF‐β activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF‐β2‐induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride‐induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF‐α‐induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF‐β induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.  相似文献   

18.
Abnormal lipid metabolism, such as systemic increased free fatty acid, results in overproduction of pro‐inflammatory enzymes and cytokines, which is crucial in the development of obesity‐related osteoarthritis (OA). However, there are only a few drugs that target the lipotoxicity of OA. Recent researches have documented that the traditional Chinese medicine, Sparstolonin B (Ssn B), exerted anti‐inflammatory effects in various diseases, but not yet in OA. On the basis of this evidence, our works purposed to evaluate the effect of Ssn B on free fatty acid (FFA) palmitate (PA)‐stimulated human osteoarthritic chondrocytes and obesity‐associated mouse OA model. We found that Ssn B suppressed PA‐triggered inflammatory response and extracellular matrix catabolism in a concentration‐dependent approach. In vivo, Ssn B treatment inhibited cartilage degeneration and subchondral bone calcification caused by joint mechanical imbalance and alleviated metabolic inflammation in obesity. Mechanistically, co‐immunoprecipitine and molecular docking analysis showed that the formation of toll­like receptor 4 (TLR4)/myeloid differentiation protein‐2 (MD‐2) complex caused by PA was blocked by Ssn B. Subsequently, it leads to inactivation of PA‐caused myeloid differentiation factor 88 (MyD88)‐dependent nuclear factor‐kappaB (NF‐κB) cascade. Together, these findings demonstrated that Ssn B is a potential treatment agent for joint degenerative diseases in obese individuals.  相似文献   

19.
Monoclonal anti‐SARS‐CoV‐2 immunoglobulins represent a treatment option for COVID‐19. However, their production in mammalian cells is not scalable to meet the global demand. Single‐domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor‐binding domain (RBD) of the SARS‐CoV‐2 Spike protein, we isolated 45 infection‐blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS‐CoV‐2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X‐ray and cryo‐EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune‐escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low‐picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold‐promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape‐mutations.  相似文献   

20.
Our laboratory originally synthesized strontium(Sr)‐containing α‐calcium sulphate hemihydrate/nano‐hydroxyapatite composite (Sr‐α‐CSH/n‐HA) and demonstrated its ability to repair critical bone defects. This study attempted to incorporate aspirin into it to produce a better bone graft material for critical bone defects. After 5% Sr‐α‐CSH was prepared by coprecipitation and hydrothermal methods, it was mixed with aspirin solution of different concentrations (50 μg/ml, 200 μg/ml, 800 μg/ml and 3200 μg/ml) at a fixed liquid‐solid ratio (0.54 v/w) to obtain aspirin‐loaded Sr‐α‐CSH/n‐HA composite. In vitro experiments were performed on the composite extracts. The tibial defects (3 mm*5 mm) in SD rat model were filled with the composite for 4 weeks and 12 weeks to evaluate its osteogenic capacity in vivo. Our results showed its capability of proliferation, migration and osteogenesis of BMSCs in vitro got improved. In vivo treatment with 800 μg/ml aspirin–loaded Sr‐α‐CSH/n‐HA composite led to significantly more new bone formation in the defects compared with Sr‐α‐CSH/n‐HA composite and significantly promoted the expression of osteogenic‐related genes and inhibited osteoclast activity. In general, our research suggests that aspirin‐loaded Sr‐α‐CSH/n‐HA composite may have a greater capacity of repairing tibial defects in SD rats than simple Sr‐α‐CSH/n‐HA composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号