首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

2.
《Autophagy》2013,9(5):574-580
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

3.
Autophagy is a fundamental eukaryotic process with multiple cytoplasmic homeostatic roles, recently expanded to include unique stand-alone immunological functions and interactions with nearly all parts of the immune system. In this article, we review this growing repertoire of autophagy roles in innate and adaptive immunity and inflammation. Its unique functions include cell-autonomous elimination of intracellular microbes facilitated by specific receptors. Other intersections of autophagy with immune processes encompass effects on inflammasome activation and secretion of its substrates, including IL-1β, effector and regulatory interactions with TLRs and Nod-like receptors, Ag presentation, naive T cell repertoire selection, and mature T cell development and homeostasis. Genome-wide association studies in human populations strongly implicate autophagy in chronic inflammatory disease and autoimmune disorders. Collectively, the unique features of autophagy as an immunological process and its contributions to other arms of the immune system represent a new immunological paradigm.  相似文献   

4.
5.
6.
7.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   

8.
Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.  相似文献   

9.
10.
Although COVID-19 emerged as a global shock, governments adopted non-pharmaceutical policy responses that were rather heterogeneous, depending on cultural and institutional characteristics. At the country level, the stringency of ‘lockdown’-type policies should be set to achieve the best possible trade-off between economic and fatality dynamics, obviously accounting for possible cross-border influences. To allow for policy learning, I assume that the first country implementing a policy initiative that is worth emulating must either get the best possible health or the best possible economic outcome. I propose a combination of sign and magnitude restrictions, embedded in a global VAR model, to identify idiosyncratic policy shocks that spill over and influence policy responses abroad. Once policy shocks are identified, I run a comparison exercise between two model specifications, i.e. with and without policy emulation. Within a given a sample, this methodology can be used to find when and where policy lessons can be identified. I find that, among 17 developed and developing countries, few can offer lessons based on their policy initiatives, but several others might get better trade-offs through policy emulation, although in reality this outcome is not guaranteed to have occurred.  相似文献   

11.
ImportanceSince the beginning of the COVID-19 pandemic, numerous metabolic alterations have been observed in individuals with this disease. It is known that SARS-CoV-2 can mimic the action of hepcidin, altering intracellular iron metabolism, but gaps remain in the understanding of possible outcomes in other pathways involved in the iron cycle.ObjectiveTo profile iron, ferritin and hepcidin levels and transferrin receptor gene expression in patients diagnosed with COVID-19 between June 2020 and September 2020.Design, setting and participantsCross-sectional study that evaluated iron metabolism markers in 427 participants, 218 with COVID-19 and 209 without the disease.ExposuresThe primary exposure was positive diagnose to COVID-19 in general population of Santo André and São Bernardo cities. The positive and negative diagnose were determinate through RT-qPCR.Main outcomes and measuresDevido a evidências de alterações do ciclo do ferro em pacientes diagnosticados com COVID-19 e devido a corregulação entre hepcidina e receptor de transferrina, uma análise da expressão gênica deste último, poderia trazer insights sobre o estado de ferro celular. A hipótese foi confirmada, mostrando aumento da expressão de receptor de transferrina concomitante com redução do nível de hepcidina circulante.ResultsSerum iron presented lower values in individuals diagnosed with COVID-19, whereas serum ferritin presented much higher values in infected patients. Elderly subjects had lower serum iron levels and higher ferritin levels, and men with COVID-19 had higher ferritin values than women. Serum hepcidin was lower in the COVID-19 patient group and transferrin receptor gene expression was higher in the infected patient group compared to controls.Conclusions and relevanceCOVID-19 causes changes in several iron cycle pathways, with iron and ferritin levels being markers that reflect the state and evolution of infection, as well as the prognosis of the disease. The increased expression of the transferrin receptor gene suggests increased iron internalization and the mimicry of hepcidin action by SARS-CoV-2, reduces iron export via ferroportin, which would explain the low circulating levels of iron by intracellular trapping.  相似文献   

12.
Bonci A  Hopf FW 《Neuron》2005,47(3):335-338
Drugs acting at dopamine D2 receptors (D2R) are commonly used to alleviate symptoms produced by diseases such as Parkinson's disease, schizophrenia, and depression. A limitation to the use of these drugs is that they sometimes afflict patients with severe side effects. This review discusses recent evidence for several proteins that represent novel mediators of the downstream consequences of D2R activation, since selective targeting of particular D2R-mediated signaling pathways could lead to the development of improved treatments for these devastating diseases.  相似文献   

13.
14.
15.
Ohad Hammer 《MABS-AUSTIN》2012,4(5):571-577
Despite progress in the treatment of B cell disorders, novel treatment approaches are still highly needed. CD19 is a pan-B cell marker that is recognized as a potential immunotherapy target for B cell disorders, including blood-borne malignancies and autoimmune diseases. Although initial attempts to target CD19 were unsuccessful, a new wave of investigational agents is currently in development. These agents are based on novel antibody-based technologies and formats that appear to better exploit CD19''s therapeutic potential, and some promising clinical study data has already been reported. This review provides an overview and the rationale for the most advanced CD19-targeting programs in development.  相似文献   

16.
PECAM-1: old friend, new partners   总被引:15,自引:0,他引:15  
  相似文献   

17.
18.
19.
Since the first reported case in December of 2019,the coronavirus disease 2019(COVID-19)has became an inter-national public health emergency.So far,there are mo...  相似文献   

20.
It is widely-assumed that the autophagic activity of living cells decreases with age and probably contributes to the accumulation of damaged macromolecules and organelles during aging. Over the last few years, the study of segmental progeroid syndromes in which certain aspects of aging are manifested precociously or in exacerbated form, has increased our knowledge of the molecular basis of aging. We have recently reported the unexpected finding that distinct progeroid murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. Further studies on Zmpste24-null progeroid mice, which are a reliable model of human Hutchinson-Gilford progeria, have revealed that the observed autophagic increase is associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong lifespan. Here, we analyze these unexpected findings and discuss their possible implications for the development of premature aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号