首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Numerous proteins and small leucine-rich proteoglycans (SLRPs) make up the composition of the extracellular matrix (ECM). Assembly of individual fibrillar components in the ECM, such as collagen, elastin, and fibronectin, is understood at the molecular level. In contrast, the incorporation of non-fibrillar components and their functions in the ECM are not fully understood.

Scope of review

This review will focus on the role of the matricellular protein thrombospondin (TSP) 2 in ECM assembly. Based on findings in TSP2-null mice and in vitro studies, we describe the participation of TSP2 in ECM assembly, cell–ECM interactions, and modulation of the levels of matrix metalloproteinases (MMPs).

Major conclusions

Evidence summarized in this review suggests that TSP2 can influence collagen fibrillogenesis without being an integral component of fibrils. Altered ECM assembly and excessive breakdown of ECM can have both positive and negative consequences including increased angiogenesis during tissue repair and compromised cardiac tissue integrity, respectively.

General significance

Proper ECM assembly is critical for maintaining cell functions and providing structural support. Lack of TSP2 is associated with increased angiogenesis, in part, due to altered endothelial cell–ECM interactions. Therefore, minor changes in ECM composition can have profound effects on cell and tissue function. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

2.

Background

Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25 years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins.

Scope of view

In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis.

Major conclusions

Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials.

General significance

Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

3.
Summary Lymph nodes contain an extensive array of extracellular matrix fibers frequently referred to as reticular fibers because of their reticular pattern and positive reaction with silver stains. These fibers are known to contain primarily type-III collagen. In the present study, frozen and plastic-embedded sections of mouse and human lymph nodes were subjected to immunostaining with a panel of monospecific antibodies directed against type-IV collagen, type-III collagen, laminin, entactin, and heparan sulfate proteoglycan. Immunofluorescent staining revealed that, in addition to being uniformly stained with antibodies to type-III collagen, these fibers also stained positively with antibodies to type-IV collagen and to other basement-membrane-specific components. Furthermore, the basement-membrane-specific antibodies stained the outer surface of individual fibers. These same type-III collagen-rich fibers were distinct from blood vascular basement membranes since they did not react with antibodies to factor VIII-related antigen, an endothelial-cell-specific marker. The role of these basement-membrane-specific components associated with the reticular fibers of lymphoid tissue is unknown. However, it is possible that the ligands promote attachment of reticular fibroblasts as well as macrophages and lymphocytes to the extracellular matrix fibers.  相似文献   

4.
Streptococcus suis serotype 2 binding to extracellular matrix proteins   总被引:4,自引:0,他引:4  
Streptococcus suis serotype 2 is a major swine and human pathogen that causes septicemia and meningitis. The ability of S. suis serotype 2 to bind to different extracellular matrix (ECM) proteins was evaluated by ELISA. All 23 strains tested bound to plasma and cellular fibronectin and collagen types I, III, and V, some to fibrin, vitronectin, and laminin, and none to the other ECM proteins tested. An unencapsulated isogenic mutant bound to ECM proteins better than its parental encapsulated strain, suggesting that the polysaccharide capsule interfered with binding. Cross-inhibition was observed between soluble plasma fibronectin and collagens in the ECM adherence assay, indicating that binding domains for both proteins exist on the same or nearby bacterial surface molecules. On the other hand, pre-incubation with plasma fibronectin increased binding to collagen IV, suggesting that S. suis might use fibronectin as a bridging molecule. The results of heat treatment and proteolytic digestion suggest that adhesins for these ECM proteins are proteinaceous in nature.  相似文献   

5.
Summary Changes in the organisation and composition of extracellular matrix in human endometrium during the menstrual cycle and early pregnancy have been assessed by immunofluorescence. Amongst interstitial components, type-III and type V-collagens and fibronectin are present in endometrial stroma throughout the menstrual cycle as well as in first trimester decidua. Type V-collagen epitopes are masked early in the cycle, but become accessible in first trimester decidua. Type VI-collagen is abundant in endometrium in the proliferative phase, but is progressively lost in the secretory phase and decidua, in which it is retained only in blood vessel walls. Vitronectin is present in some blood vessels in decidua. Decidualising stromal cells also produce basement membrane components (type IV-collagen, laminin, heparan sulphate proteoglycan and a glycoprotein family recognised by monoclonal antibody G71) and these become organised into a pericellular aura.  相似文献   

6.
Summary Rat mesenteric arteries, perfusion fixed in relaxed or contracted conditions, were digested with acid and elastase, bleach (sodium hypochlorite), or alkali to selectively remove collagen, elastin, or cells. Scanning electron microscopy was used to study the three-dimensional organization of the remaining cells or extracellular components. Smooth muscle cells of the tunica media were elongated and circumferentially oriented. Superior mesenteric artery cells had an irregular surface with numerous projections and some ends were forked. Small mesenteric artery cells were spindle shaped with longitudinal surface ridges, and showed extensive corrugations upon contraction. Elastin was present both as laminae and as an interconnected fibrous meshwork. Collagen was arranged in an irregular network of individual fibrils and small bundles of fibrils that formed nests around the cells in both arteries. This irregular arrangement persisted, with no apparent reordering or loss of order, upon contraction. The lack of an ordered arrangement or specialized organization at the cell ends suggests mechanical coupling of the cells to elastin or collagen throughout the length of the cell, allowing for force transmission in a number of directions. The tunica media is thus a composite material consisting of cells, elastin, and collagen. The isotropic network of fibers is well suited for transmitting the shearing forces placed on it by contraction of smooth muscle cells and by pressure-induced loading.  相似文献   

7.
The purpose of this investigation is to support the novel hypothesis that collagenous matrices are intrinsically "smart" load-adapting biomaterials. This hypothesis is based fundamentally on the postulate that tensile strain directly modulates the susceptibility of collagen molecules to enzymatic degradation (i.e., protects molecules which are under load from cleavage). To test this postulate, collagenase (Clostridiopeptidase A) was applied to a uniaxially loaded, anisotropic, devitalized, collagenous matrix in which a subset of fibrils was loaded in tension while the remaining fibrils carried little or no load. The collagen degradation pattern (as assessed by polarization and transmission electron microscopy) was found to correspond inversely to the tensile stress field such that fibrils under lower tensile load were preferentially cleaved. These results have immediate implications for tissue engineering of load-bearing collagenous matrices in vitro and may contribute significantly to our understanding of synthesis, remodelling, and pathogenesis of collagen matrices in vivo.  相似文献   

8.
Summary The distribution patterns of extracellular matrix elements were determined to ascertain whether they play a role in the localization of lymphocytes in discrete T-cell, B-cell and dome antigen-processing domains within Peyer's patches. Antibodies against collagen types I, III and IV, laminin and fibronectin were applied to cryosections of mouse Peyer's patches and localized by direct or indirect immunoperoxidase methods. T-cell domains were identified with a monoclonal antibody against Thy-1.2. Labeled reticular fibers in distinctive patterns were more numerous in parafollicular and dome areas than within follicles. Germinal centers contained few such fibers. In parafollicular areas, fibers were oriented predominantly toward follicle domes; their distribution corresponded to T-cell zones and lymphocyte traffic areas, with their orientation being parallel to the migration pathways of lymphocytes from high endothelial venules to the antigen-processing domes. Subepithelial and subendothelial basal laminae were immunopositive for type-IV collagen, laminin and fibronectin. The dome subepithelial basal lamina had pore-like discontinuities through which lymphocytes migrated to and from the epithelium. The correspondence of the distribution patterns of extracellular matrix to specific functional domains of Peyer's patches suggests that this matrix provides a structural framework for lymphocyte migration and localization.  相似文献   

9.
Ultrastructural aspects of the extracellular matrix (ECM) in the midaxial region of dysraphic embryos of the loop-tail (Lp) mutant mouse were analyzed by means of electron microscopy. In 17–23 somite embryos, ultrastructural differences in the ECM occurred with respect to the presence of a pair of long trailing basal laminar strands extending continuously from the ventral notochordal cells to the gut in abnormal (Lp/Lp) embryos, in contrast to short, ragged, discontinuous strands in normal (+ /+;Lpj +) embryos. The ultrastructural localization and configuration of fibronectin (FN) and laminin (L) associated with these strands, however, were similar in normals and abnormals. In addition, FN occurred over interstitial bodies, fibrils, and sporadically along the basal laminae of the neural tube (or folds), notochord, gut, and vessels, whereas L was largely confined to the basal laminae. The results indicate that although the ultrastructural pattern of FN and L reactivity are similar in normal and abnormal embryos, a disturbance in the manner whereby the notochord detaches from the gut in dysraphic embryos may be of causal significance in the etiology of dysraphism in this mutant.  相似文献   

10.
Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.  相似文献   

11.
Vascular inflammation plays a key role in the pathogenesis of atherosclerosis. The first step in vascular inflammation is endothelial exocytosis, in which endothelial granules fuse with the plasma membrane, releasing prothrombotic and proinflammatory messenger molecules. The development of cell culture models to study endothelial exocytosis has been challenging because the factors that modulate exocytosis in vitro are not well understood. Here we report a method for studying endothelial exocytosis that optimizes extracellular matrix components, cell density, and duration of culture. Human umbilical vein endothelial cells plated on collagen I-coated plates and cultured in the confluent state for 7–12 days in low-serum medium showed robust secretion of von Willebrand factor when stimulated with various agonists. This exocytosis assay is rapid and applicable to high-throughput screening.  相似文献   

12.
Protein disulfide isomerase (PDI) is a multifunctional protein required for many aspects of protein folding and transit through the endoplasmic reticulum. A conserved family of three PDIs has been functionally analysed using genetic mutants of the model organism Caenorhabditis elegans. PDI-1 and PDI-3 are individually non-essential, whereas PDI-2 is required for normal post-embryonic development. In combination, all three genes are synergistically essential for embryonic development in this nematode. Mutations in pdi-2 result in severe body morphology defects, uncoordinated movement, adult sterility, abnormal molting and aberrant collagen deposition. Many of these phenotypes are consistent with a role in collagen biogenesis and extracellular matrix formation. PDI-2 is required for the normal function of prolyl 4-hydroxylase, a key collagen-modifying enzyme. Site-directed mutagenesis indicates that the independent catalytic activity of PDI-2 may also perform an essential developmental function. PDI-2 therefore performs two critical roles during morphogenesis. The role of PDI-2 in collagen biogenesis can be restored following complementation of the mutant with human PDI.  相似文献   

13.
Introduction: The cardiac extracellular matrix (ECM) provides anatomical, biochemical, and physiological support to the left ventricle. ECM proteins are difficult to detect using unbiased proteomic approaches due to solubility issues and a relatively low abundance compared to cytoplasmic and mitochondrial proteins present in highly prevalent cardiomyocytes.

Areas covered: Proteomic capabilities have dramatically improved over the past 20 years, due to enhanced sample preparation protocols and increased capabilities in mass spectrometry (MS), database searching, and bioinformatics analysis. This review summarizes technological advancements made in proteomic applications that make ECM proteomics highly feasible.

Expert commentary: Proteomic analysis of the ECM provides an important contribution to our understanding of the molecular and cellular processes associated with cardiovascular disease. Using results generated from proteomics approaches in basic science applications and integrating proteomics templates into clinical research protocols will aid in efforts to personalize medicine.  相似文献   


14.
A neocartilage construct readily amenable to microscopy and biomechanical studies is described. Porcine articular cartilage was digested with a mixture of dispase and collagenase for chondrons or pronase and collagenase for chondrocytes. Chondrons or chondrocytes plated in 96-well plates were fixed and immunolabeled in situ for fluorescence microscopy at days 4 and 11. Collagen types I and II, aggrecan, and MMP-13 expression was assayed by semiquantitative RT-PCR. Cell numbers were analyzed by MTT assay. Chondrons and chondrocytes produced neocartilage that could be handled with minimal tearing on day 3 and none on day 11. Some cell division occurred between days 4 and 7. In both cultures, chondrocytes were surrounded by a thin rim of type VI collagen and osteopontin. Type II collagen, keratan sulfate, and tenascin were abundant throughout. At day 3, cells were rounded but by day 11 flattened cells were visible in the substratum. Continued synthesis of aggrecan and type II collagen mRNA indicated maintenance of the chondrocyte phenotype. The neocartilage was easy to immunolabel in situ without the need for sectioning, and individual cells were readily observed by microscopy. The versatility of these constructs makes them ideal for microscopy and for biomechanical studies.  相似文献   

15.
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.  相似文献   

16.
17.
Extracellular matrix (ECM) molecules, derived from both neurons and glial cells, are secreted and accumulate in the extracellular space to regulate various aspects of pre- and postsynaptic differentiation, the maturation of synapses, and their plasticity. The emerging mechanisms comprise interactions of agrin, integrin ligands, and reelin, with their cognate cell-surface receptors being coupled to tyrosine kinase activities. These may induce the clustering of postsynaptic receptors and changes in their composition and function. Furthermore, direct interactions of laminins, neuronal pentraxins, and tenascin-R with voltage-gated Ca2+ channels, α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA), and γ-aminobutyric acidB (GABAB) receptors, respectively, shape the organization and function of different subsets of synapses. Some of these mechanisms significantly contribute to the induction of long-term potentiation in excitatory synapses, either by the regulation of Ca2+ entry via N-methyl-D-aspartate receptors or L-type Ca2+ channels, or by the control of GABAergic inhibition.A.D. was supported by DFG grants Di 702/4-1,-2 and -3.  相似文献   

18.
Summary The distribution of collagen types I, III, IV, and of fibronectin has been studied in the human dermis by light and electron-microscopic immunocytochemistry, using affinity purified primary antibodies and tetramethylrhodamine isothiocyanate-conjugated secondary antibodies. Type I collagen was present in all collagen fibers of both papillary and reticular dermis, but collagen fibrils, which could be resolved as discrete entities, were labeled with different intensity. Type III collagen codistributed with type I in the collagen fibers, besides being concentrated around blood vessels and skin appendages. Coexistence of type I and type III collagens in the collagen fibrils of the whole dermis was confirmed by ultrastructural double-labelling experiments using colloidal immunogold as a probe. Type IV collagen was detected in all basement membranes. Fibronectin was distributed in patches among collagen fibers and was associated with all basement membranes, while a weaker positive reaction was observed in collagen fibers. Ageing caused the thinning of collagen fibers, chiefly in the recticular dermis. The labeling pattern of both type I and III collagens did not change in skin samples from patients of up to 79 years of age, but immunoreactivity for type III collagen increased in comparison to younger skins. A loss of fibronectin, likely related to the decreased morphogenetic activity of tissues, was observed with age.  相似文献   

19.
The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.  相似文献   

20.
The malignant behavior of cancers depends on the microenvironmental context. We investigated compositional alterations of the extracellular matrix (ECM) in pancreatic cancer, with special emphasis on the proteoglycans decorin, lumican, and versican. Compared with normal controls (n=18), marked overexpression of these proteoglycans was observed in pancreatic cancer tissues (n=30) by quantitative RT-PCR (p<0.0001). Immunohistochemistry revealed abundance of proteoglycans in the ECM of pancreatic cancer specimens, whereas tumor cells themselves were devoid of either decorin, lumican or versican. RT-PCR confirmed pancreatic stellate cells (PSCs) as the major source of these proteins. Interestingly, TGFbeta1 and conditioned medium derived from pancreatic cancer cell lines synergistically suppressed the expression of known anti-tumor factors decorin and lumican, but stimulated the expression of pro-metastatic factor versican in cultured PSCs. These findings indicate that malignant cells can actively influence the composition of the ECM through TGFbeta1 and other soluble factors, altering their microenvironment in a tumor-favorable way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号