首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The main purpose of this study was to assess the influence of the environmental temperature on both the aerodynamic flow evolving around the bicycle and cycling power output. The CFD method was used to investigate the detailed flow field around the cyclist/bicycle system for a constant speed of 11.1 m/s (40 km/h) without wind. In complement, a mathematical model was used to determine the temperature-dependent power output in the range [−10; 40 °C]. The numerical investigation gives valuable information about the turbulent flow field in the cyclist's wake which evolves accordingly the surrounding temperature. A major result of this study is that the areas of overpressure upstream of the cyclist and of underpressure downstream of him are less extensive for a temperature of 40 °C compared to −10 °C. The results suggest that the aerodynamic braking effect of the bicycle is minimized when the air temperature is high, as a lower air density results in a reduction in drag on the cyclist. This study showed that the power required to maintain a constant speed is reduced when the temperature is high, the reason being a lower aerodynamic resistance.  相似文献   

3.
Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fms. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carry out theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Huid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.  相似文献   

4.
5.
6.
Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular system. Results: The flow rate of native coronary arteries and grafts are all calculated and illustrated in this paper. No significant difference of the native coronary arteries flow and graft flow exists between two surgical procedures. The wall shear stress (WSS) and streamline were also depicted. The graft WSS of sequential graft is 19.1% higher than Y-type graft. While flow separation appears at the bifurcation of Y-type graft. Conclusion: The short-term outcomes of sequential graft and Y-type graft are almost the same. But it can be found from the hemodynamics factors that the longterm patency of the sequential graft is better.  相似文献   

7.
Criteria for rupture prediction of Abdominal Aortic Aneurysm (AAA) are based only on the diameter of AAA. This method does not consider complex hemodynamic forces exerted on AAA wall. The methodology used in our study combines Computer-Aided Design (CAD) with Computational Fluid Dynamics (CFD). Three-dimensional vascular structures reconstructions were based on Computed Tomography (CT) images and CAD. CFD theory was used for mathematical modeling and simulations. In this way, dynamic behavior of blood flow in bounded three-dimensional space was described. Doppler Ultrasonography (US) was used for model results validation. All simulations were based on medical investigation of 4 patients (male older than 65 years) with diagnosed AAA. Good correspondence between computed velocities in AAA and measured values with Doppler US (Patient 1 0.60 m·s−1 versus 0.61 m·s−1, Patient 2 0.80 m·s−1 versus 0.80 m·s−1, Patient 3 0.75 m·s−1 versus 0.78 m·s−1, Patient 4 0.50 m·s−1 versus 0.49 m·s−1) was noticed. The good agreement between measured and simulated velocities validates our methodology and the other data available from simulations (eg. von Misses stress) could be used to provide useful information about the possibility of AAA rupture.  相似文献   

8.
Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.  相似文献   

9.
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale‐up. Computational Fluid Dynamics (CFD) provides a cost‐effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:837–844, 2014  相似文献   

10.
Euler-Lagrange CFD simulations, where the biotic phase is represented by computational particles (parcels), provide information on environmental gradients inside bioreactors from the microbial perspective. Such information is highly relevant for reactor scale-down and process optimization. One of the major challenges is the computational intensity of CFD simulations, especially when resolution of dynamics in the flowfield is required. Lattice-Boltzmann large-eddy simulations (LB-LES) form a very promising approach for simulating accurate, dynamic flowfields in stirred reactors, at strongly reduced computation times compared to finite volume approaches. In this work, the performance of LB-LES in resolving substrate gradients in large-scale bioreactors is explored, combined with the inclusion of a Lagrangian biotic phase to provide the microbial perspective. In addition, the hydrodynamic performance of the simulations is confirmed by verification of hydrodynamic characteristics (radial velocity, turbulent kinetic energy, energy dissipation) in the impeller discharge stream of a 29 cm diameter stirred tank. The results are compared with prior finite volume simulation results, both in terms of hydrodynamic and biokinetic observations, and time requirements.  相似文献   

11.

A two-dimensional time-dependent computational fluid dynamics model of the Circle of Willis has been developed. To simulate, not only the peripheral resistance of the cerebrovascular tree but also its auto-regulation function, a new "active" boundary condition has been defined and developed using control theory to provide a model of the feedback mechanism. The model was then used to simulate different common abnormalities of the Circle of Willis while a pressure drop, simulating a rapid compression of the right internal carotid artery, was imposed. Test results using a simple tube compared excellently with experiment. The total time-dependent flux for each efferent artery was tabulated and showed the important relationship between geometrical variations in the Circle of Willis and the auto-regulation of blood flow by vascular vaso-dilation and contraction. From this study, it was found that the worst case seemed to be that of a missing or dysfunctional right A1 segment of the anterior cerebral artery. The use of valid physiological models of the peripheral resistance allows for more realistic models of the blood flow in the Circle whilst allowing an easy extension to 3D patient specific simulations.  相似文献   

12.

The venous network in the lower limbs is composed of a considerable number of confluent junctions. Each of these singularities introduces some blood flow disturbances. Each physiological junction is unique, in terms of its geometry as well as the blood flow rate. In order to account for this great variability, we developed a numerical model based on the use of the N3S code (a software package for solving Navier-Stokes equations). To test the validity of the model, one of the numerical simulations is compared with the data obtained in the corresponding experimental configuration. The velocity measurements were carried out with an ultrasonic pulsed Doppler velocimeter. We also measured pressure differences using differential sensors. The numerical computations were then used to obtain the values of the flow variables at any point, with various geometrical and flow configurations. As far as the velocity field is concerned, a very marked three-dimensional pattern with swirls was observed. The pressure evolution was also strongly disturbed, with a non-linear decrease. All these data indicate that confluence effects cannot be neglected when evaluating pressure decreases. With a tool of this kind, it is possible to accurately predict the disturbances associated with any geometrical configuration or any flow rate.  相似文献   

13.
The formation of pH gradients in a 700 L batch fermentation of Streptococcus thermophilus was studied using multi-position pH measurements and computational fluid dynamics (CFD) modeling. To this end, a dynamic, kinetic model of S. thermophilus and a pH correlation were integrated into a validated one-phase CFD model, and a dynamic CFD simulation was performed. First, the fluid dynamics of the CFD model were validated with NaOH tracer pulse mixing experiments. Mixing experiments and simulations were performed whereas multiple pH sensors, which were placed vertically at different locations in the bioreactor, captured the response. A mixing time of about 46 s to reach 95% homogeneity was measured and predicted at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus fermentation captured the experimentally observed pH gradients between a pH of 5.9 and 6.3, which occurred during the exponential growth phase. A pH higher than 7 was predicted in the vicinity of the base solution inlet. Biomass growth, lactic acid production, and substrate consumption matched the experimental observations. Moreover, the biokinetic results obtained from the CFD simulation were similar to a single-compartment simulation, for which a homogeneous distribution of the pH was assumed. This indicates no influence of pH gradients on growth in the studied bioreactor. This study verified that the pH gradients during a fermentation in the pilot-scale bioreactor could be accurately predicted using a coupled simulation of a biokinetic and a CFD model. To support the understanding and optimization of industrial-scale processes, future biokinetic CFD studies need to assess multiple types of environmental gradients, like pH, substrate, and dissolved oxygen, especially at industrial scale.  相似文献   

14.
Background and purposeThe comparison of different time-varying three-dimensional hemodynamic data (4D) is a formidable task. The purpose of this study is to investigate the potential of the proper orthogonal decomposition (POD) for a quantitative assessment.MethodsThe complex spatial-temporal flow information was analyzed using proper orthogonal decomposition to reduce the complexity of the system. PC-MRI blood flow measurements and computational fluid dynamic simulations of two subject-specific IAs were used to compare the different flow modalities. The concept of Modal Assurance Criterion (MAC) provided a further detailed objective characterization of the most energetic individual modes.ResultsThe most energetic flow modes were qualitatively compared by visual inspection. The distribution of the kinetic energy on the modes was used to quantitatively compare pulsatile flow data, where the most energetic mode was associated to approximately 90% of the total kinetic energy. This distribution was incorporated in a single measure, termed spectral entropy, showing good agreement especially for Case 1.ConclusionThe proposed quantitative POD-based technique could be a valuable tool to reduce the complexity of the time-dependent hemodynamic data and to facilitate an easy comparison of 4D flows, e.g., for validation purposes.  相似文献   

15.
The flow of bile in the human cystic duct   总被引:3,自引:0,他引:3  
Clinical studies suggest that the flow of bile in the biliary system may be a contributing factor in the pathogenesis of cholelithiasis, but little is known about its transport mechanism. This paper reports a numerical study of steady flow in human cystic duct models. In order to obtain parametric data on the effects of various anatomical features in the cystic duct, idealised models were constructed, first with staggered baffles in a channel to represent the valves of Heister and lumen. The qualitative consistency of these findings are validated by modelling two of the real cystic ducts obtained from operative cholangiograms. Three-dimensional (3D) models were also constructed to further verify the two-dimensional (2D) results. It was found that the most significant geometric parameter affecting resistance is the baffle clearance (lumen size), followed by the number of baffles (number of folds in the valves of Heister), whilst the least significant ones are the curvature of the cystic duct and the angle between the neck and the gallbladder. The study presented here forms part of a larger project to understand the functions of the human cystic duct, especially the influence of its various anatomical structures on the resistance to bile flow, so that it may aid the assessment of the risk of stone formation in the gallbladder.  相似文献   

16.
The potential outcome of a surgical enlargement of internal nasal channels may be a complication of nasal breathing termed the Empty Nose Syndrome (ENS). ENS pathophysiology is not entirely understood because the expansion of air pathways would in theory ease inhalation. The present contribution is aimed at defining the biophysical markers responsible for ENS. Our study, conducted in silico, compares nasal aerodynamics in pre- and post-operative geometries acquired by means of computer tomography from the same individual. In this article, we elucidate and analyse the deviation of airflow patterns and nasal microclimate from the healthy benchmarks. The analysis reveals 53% reduction in flow resistance, radical re-distribution of nasal airflow, as well as dryer and colder nasal microclimate for the post-operative case.  相似文献   

17.
Numerical simulation of mechanical mixing in high solid anaerobic digester   总被引:1,自引:0,他引:1  
Yu L  Ma J  Chen S 《Bioresource technology》2011,102(2):1012-1018
Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure.  相似文献   

18.
The human nose serves vital physiological functions, including warming, filtration, humidification, and olfaction. These functions are based on transport phenomena that depend on nasal airflow patterns and turbulence. Accurate prediction of these airflow properties requires careful selection of computational fluid dynamics models and rigorous validation. The validation studies in the past have been limited by poor representations of the complex nasal geometry, lack of detailed airflow comparisons, and restricted ranges of flow rate. The objective of this study is to validate various numerical methods based on an anatomically accurate nasal model against published experimentally measured data under breathing flow rates from 180 to 1100 ml/s. The numerical results of velocity profiles and turbulence intensities were obtained using the laminar model, four widely used Reynolds-averaged Navier-Stokes (RANS) turbulence models (i.e., k-ε, standard k-ω, Shear Stress Transport k-ω, and Reynolds Stress Model), large eddy simulation (LES) model, and direct numerical simulation (DNS). It was found that, despite certain irregularity in the flow field, the laminar model achieved good agreement with experimental results under restful breathing condition (180 ml/s) and performed better than the RANS models. As the breathing flow rate increased, the RANS models achieved more accurate predictions but still performed worse than LES and DNS. As expected, LES and DNS can provide accurate predictions of the nasal airflow under all flow conditions but have an approximately 100-fold higher computational cost. Among all the RANS models tested, the standard k-ω model agrees most closely with the experimental values in terms of velocity profile and turbulence intensity.  相似文献   

19.
20.
A computational fluid dynamics (CFD) method is presented to investigate the flow of cerebro-spinal fluid (CSF) in the cerebral aqueduct. In addition to former approaches exhibiting a rigid geometry, we propose a model which includes a deformable membrane as the wall of this flow channel. An anatomical shape of the aqueduct was computed from magnetic resonance images (MRI) and the resulting meshing was immersed in a marker-and-cell (MAC) staggered grid for to take into account fluid–structure interactions. The time derivatives were digitized using the Crank–Nicolson scheme. The equation of continuity was modified by introducing an artificial compressibility and digitized by a finite difference scheme.

Calculations were validated with the simulation of laminar flow in a rigid tube. Then, comparisons were made between simulations of a rigid aqueduct and a deformable one. We found that the deformability of the walls has a strong influence on the pressure drop for a given flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号