首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we have developed a novel and simple method to quantify the ability to selectively activate our muscles in an effective pattern to achieve a particular task. In the context of this study, we define an effective pattern as that in which muscles whose mechanical contribution to the task is greatest, are mostly active, while the antagonist muscles are mostly silent. This new method uses biomechanical parameters to project the multi-channel EMGs into a three-dimensional artificial torque space, where the EMGs are represented as muscle activation vectors. Using the muscle activation vectors we defined a simple scalar, the muscle selection index, to quantify muscle selectivity. We demonstrate that by using this index we are able to quantify the muscle selectivity during the generation of isometric shoulder or elbow torques in brain-injured and able-bodied subjects. This method can be used during both static and dynamic motor tasks in a multi-articular musculoskeletal system.  相似文献   

2.
3.
In this work, we have studied a muscular control system under experimental conditions for analyzing the dynamic behavior of individual muscles and theoretical considerations for elucidating its control strategy. Movement of human limbs is achieved by joint torques and each torque is specified as the sum of torques generated by muscle forces. The behavior of individual muscles is controlled by the neural input which is estimated by means of an electromyogram (EMG). In this study, the EMGs for a flexor and an extensor are measured in elbow joint movements and the dynamic behavior of individual muscles is analyzed. As a result, it is verified that both a flexor and an extensor are activated throughout the entire movement and that the activation of muscles is controlled above a specific limit independent of the hand-held load. Subsequently, a system model for simulating elbow joint movements is developed which includes the muscle dynamic relationship between the neural input and the isometric force. The minimum limit of muscle activation that has been confirmed in experiments is provided as a constraint of the neural input and the criterion is defined by a derivative of the isometric force of individual muscles. The optimal trajectories formulated under these conditions are quantitatively compared with the experimentally observed trajectories, and the control strategy of a muscular control system is studied. Finally, a muscular control system in multi-joint arm movements is discussed with regard to the comparative analysis between observed and optimal trajectories. Received: 7 April 1999 / Accepted in revised form: 27 July 1999  相似文献   

4.
Interpretation of surface electromyograms (EMG) is usually based on the assumption that the surface representation of action potentials does not change during their propagation. This assumption does not hold for muscles whose fibers are oblique to the skin. Consequently, the interpretation of surface EMGs recorded from pinnate muscles unlikely prompts from current knowledge. Here we present a complete analytical model that supports the interpretation of experimental EMGs detected from muscles with oblique architecture. EMGs were recorded from the medial gastrocnemius muscle during voluntary and electrically elicited contractions. Preliminary indications obtained from simulated and experimental signals concern the spatial localization of surface potentials and the myoelectric fatigue. Specifically, the spatial distribution of surface EMGs was localized about the fibers superficial extremity. Strikingly, this localization increased with the pinnation angle, both for the simulated EMGs and the recorded M-waves. Moreover, the average rectified value (ARV) and the mean frequency (MNF) of interference EMGs increased and decreased with simulated fatigue, respectively. The degree of variation in ARV and MNF did not depend on the pinnation angle simulated. Similar variations were observed for the experimental EMGs, although being less evident for a higher fiber inclination. These results are discussed on a physiological context, highlighting the relevance of the model proposed here for the interpretation of gastrocnemius EMGs and for conceiving future experiments on muscles with pinnate geometry.  相似文献   

5.
Studies in mammals have found that during breathing the triangularis sterni (TS) muscle regulates expiratory airflow and the end-expiratory position of the rib cage and furthermore that the respiratory activity of this muscle is influenced by a variety of chemical and mechanical stimuli. To assess the role of the TS during coughing and sneezing, electromyograms (EMGs) recorded from the TS were compared with EMGs of the transversus abdominis (TA) in eight pentobarbital-anesthetized dogs. During coughing induced by mechanically stimulating the trachea or larynx (n = 7 dogs), peak EMGs increased from 23 +/- 2 to 74 +/- 5 U (P less than 0.00002) for the TS and from 21 +/- 6 to 66 +/- 4 U (P less than 0.0002) for the TA. During sneezing induced by mechanically stimulating the nasal mucosa (n = 3 dogs), peak EMG of the TS increased from 10 +/- 3 to 66 +/- 7 U (P less than 0.005) and peak EMG of the TA increased from 10 +/- 2 to 73 +/- 7 U (P less than 0.02). For both muscles the shape of the EMG changed to an early peaking form during coughs and sneezes. Peak expiratory airflow during coughs of different intensity correlated more closely with peak TS EMG in three dogs and with peak TA EMG in four dogs; peak expiratory airflow during sneezes of different intensity correlated more closely with peak TS than TA EMG in all three animals. These results suggest that the TS is actively recruited during coughing and sneezing and that different neuromuscular strategies may be utilized to augment expiratory airflow.  相似文献   

6.
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual?s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG?s information content. This limits the EMG-driven model?s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model?s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.  相似文献   

7.
Electromyograms (EMGs) are measured by bipolar surface electrodes that quantify potential differences. Bipolar potentials over penniform muscles may be associated with errors. Our assumption was that muscle activity can be quantified more reliably and with a higher spatial resolution using current measurements.The purpose of this work is: (a) to introduce the concept of current measurements to detect muscle activity, (b) to show the coherences observed over a segment of a typical penniform muscle, the gastrocnemius medialis where one would expect a synchronicity of the activation, and (c) to show the amount of mixing that is caused by the finite inter electrode resistance.A current amplifier was developed. EMGs were recorded at 40% of maximum voluntary contraction during isometric contractions of the gastrocnemius medialis. EMGs of twelve persons were recorded with an array of four peripheral and one central electrode. Monopolar EMGs were recorded for “all-potential”, “center at current” and “all-current” conditions. Coherence revealed the similarity of signals recorded from neighboring electrodes.Coherence was high for the “all-potential”, significant for the “current at center” condition and disappeared in the “all-current” condition.It was concluded that EMG array recordings strongly depends on the measurement configuration. The proposed current amplifier significantly improves spatial resolution of EMG array recordings because the inter-electrode cross talk is reduced.  相似文献   

8.
The electromyograms (EMG) of shivering human subjects exposed to 0 degrees C air in an environmental chamber were analyzed to detect slow-amplitude modulations (SAMs, less than 1 Hz) in the EMGs of widely separated muscles and to study the relationship of these SAMs to respiration rate and skin temperature. Distinct amplitude modulations were observed in the raw EMGs during shivering. The peaks in EMG activity occurred simultaneously in the majority of the monitored muscles in all subjects. Pearson correlations between the average rectified EMGs of 93% of the muscles were significant (P less than 0.05). Visual analysis of the EMG and respiration signals indicated that the peaks in muscular activity occurred 6-12 times/min, whereas respiration ranged from 10 to 23 cycles/min. For all subjects respiration was at a higher frequency than amplitude modulation in the EMG. Comparison of EMG records with expiratory flow rate traces in shivering subjects indicated no one-to-one correlation between the occurrence of respiration and EMG amplitude modulations. Respiratory flow rate and average rectified EMG showed significant correlation in only 33% of the cases. In addition, skin temperature changes could not be correlated with the SAMS.  相似文献   

9.
We assessed the effects of cooling the ventral medullary surface (VMS) on the activity of chest wall and abdominal expiratory muscles in eight anesthetized artificially ventilated dogs after vagotomy and denervation of the carotid sinus nerves. Electromyograms (EMGs) of the triangularis sterni, internal intercostal, abdominal external oblique, abdominal internal oblique, and transversus abdominis muscles were measured with EMG of the diaphragm as an index of inspiratory activity. Bilateral localized cooling (2 x 2 mm) in the thermosensitive intermediate part of the VMS produced temperature-dependent reduction in the EMG of diaphragm and abdominal muscles. The rib cage expiratory EMGs were little affected at 25 degrees C; their amplitudes decreased at lower VMS temperatures (less than 20 degrees C) but by significantly fewer degrees than the diaphragmatic and abdominal expiratory EMGs at a constant VMS temperature. With moderate to severe cooling (less than 20 degrees C) diaphragmatic EMG disappeared, but rib cage expiratory EMGs became tonic and resumed a phasic pattern shortly before the recovery of diaphragmatic EMG during rewarming of the VMS. These results indicate that the effects of cooling the VMS differ between the activity of rib cage and abdominal expiratory muscles. This variability may be due to inhomogeneous inputs from the VMS to expiratory motoneurons or to a different responsiveness of various expiratory motoneurons to the same input either from the VMS or the inspiratory neurons.  相似文献   

10.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

11.
Surface electromyograms (EMG) of back muscles are often corrupted by electrocardiogram (ECG) signals. This noise in the EMG signals does not allow to appreciate correctly the spectral content of the EMG signals and to follow its evolution during, for example, a fatigue process. Several methods have been proposed to reject the ECG noise from EMG recordings, but seldom taking into account the eventual changes in ECG characteristics during the experiment. In this paper we propose an adaptive filtering algorithm specifically developed for the rejection of the electrocardiogram corrupting surface electromyograms (SEMG). The first step of the study was to choose the ECG electrode position in order to record the ECG with a shape similar to that found in the noised SEMGs. Then, the efficiency of different algorithms were tested on 28 erector spinae SEMG recordings. The best algorithm belongs to the fast recursive least square family (FRLS). More precisely, the best results were obtained with the simplified formulation of a FRLS algorithm. As an application of the adaptive filtering, the paper compares the evolutions of spectral parameters of noised or denoised (after adaptive filtering) surface EMGs recorded on erector spinae muscles during a trunk extension. The fatigue test was analyzed on 16 EMG recordings. After adaptive filtering, mean initial values of energy and of mean power frequency (MPF) were significantly lower and higher respectively. The differences corresponded to the removal of the ECG components. Furthermore, classical fatigue criteria (increase in energy and decrease in MPF values over time during the fatigue test) were better observed on the denoised EMGs. The mean values of the slopes of the energy-time and MPF-time linear relationships differed significantly when established before and after adaptive filtering. These results account for the efficacy of the adaptive filtering method proposed here to denoise electrophysiological signals.  相似文献   

12.
The neonatal ventilatory response to hypoxia is characterized by initial transient stimulation and subsequent respiratory depression. It is unknown, however, whether this response is also exhibited by the upper airway muscles that regulate nasal, laryngeal, and pharyngeal patency. We therefore compared electromyogram (EMG) amplitudes and minute EMGs for the diaphragm (DIA), alae nasi (AN), posterior cricoarytenoid (PCA), and genioglossus (GG) muscles in 12 anesthetized spontaneously breathing piglets during inhalation of 12% O2 over 10 min. Minute EMG for the DIA responded to hypoxia with an initial transient increase and subsequent return to prehypoxia levels by 10 min. Hypoxia also stimulated all three upper airway muscles. In contrast to the DIA EMG, however, AN, PCA, and GG EMGs all remained significantly above prehypoxia levels after 10 min of hypoxia. We have thus demonstrated that the initial stimulation and subsequent depression of the DIA EMG after 12% O2 inhalation contrast with the sustained increase in AN, PCA, and GG EMGs during hypoxia. We speculate that 1) central inhibition during neonatal hypoxia is primarily distributed to the motoneuron pools regulating DIA activation and 2) peripheral chemoreceptor stimulation and/or central disinhibition induced by hypoxia preferentially influence those motoneuron pools that regulate upper airway muscle activation, causing the different hypoxic responses of these muscle groups in the young piglet.  相似文献   

13.
Inferences on the active contribution of plantar flexors to the stabilisation of human standing posture have been drawn from surface electromyograms (EMGs). Surface EMGs were however often detected unilaterally, presuming the myoelectric activity from muscles in a single leg reflects the pattern of muscle activation in both legs. In this study we question whether surface EMGs detected from plantar flexor muscles in both legs provide equal estimates of the duration of activity. Arrays of surface electrodes were used to collect EMGs from gastrocnemius and soleus muscles while twelve, young male participants stood at ease for 60 s. Muscles in each leg were deemed active whenever the Root Mean Square amplitude of EMGs (40 ms epochs) detected by any channel in the arrays exceeded the noise level, defined from EMGs detected during rest. The Chi-Square statistics revealed significant differences in the relative number of active periods for both muscles in 10 out of 12 participants tested, ranging from 2% to 65% (χ2 > 17.90; P < 0.01). Pearson correlation analysis indicated side differences in the duration of gastrocnemius though not soleus activity were associated with the centre of pressure mean, lateral position (R = 0.60; P = 0.035). These results suggest therefore that surface EMGs may provide different estimates of the timing of plantar flexors’ activity if collected unilaterally during standing and that asymmetric activation may be not necessarily associated with weight distribution between limbs. Depending on the body side from which EMGs are collected, the active contribution of plantar flexors to standing stabilization may be either under- or over-valued.  相似文献   

14.
Electromyograms (EMGs) need to be normalized if comparisons are sought between trials when electrodes are reapplied, as well as between different muscles and individuals. The methods used to normalize EMGs recorded from healthy individuals have been appraised for more than a quarter of a century. Eight methods were identified and reviewed based on criteria relating to their ability to facilitate the comparison of EMGs. Such criteria included the magnitude and pattern of the normalized EMG, reliability, and inter-individual variability. If the aim is to reduce inter-individual variability, then the peak or mean EMG from the task under investigation should be used as the normalization reference value. However, the ability of such normalization methods to facilitate comparisons of EMGs is questionable. EMGs from MVCs can be as reliable as those from submaximal contractions, and do not appear to be affected by contraction mode or joint kinematics, particularly for the elbow flexors. Thus, the EMG from an isometric MVC is endorsed as a normalization reference value. Alternatively the EMG from a dynamic MVC can be used, although it is recognized that neither method is guaranteed to be able to reveal how active a muscle is in relation to its maximal activation capacity.  相似文献   

15.
The relative contribution of synergistic muscles has been studied during pedalling on a bicycle. The electromyographic (EMG) activity of the different components of triceps surae (namely soleus or SOL and medial gastrocnemius or MG) has been recorded and analyzed for increasing pedalling speed performed against increasing resistance. The results indicate that SOL IEMG (integrated EMG) increases linearly (y = 2x-12.1; r = 0.98) with increasing load (10-70 N) at constant speed (60 rpm), whereas no change is noted in MG IEMG below 40 N. In contrast, when the pedalling speed is increased (from 30 to 170 rpm) at constant load, MG IEMG shows the largest increase. Furthermore, although in both muscles EMG activity appears earlier in the movement with increases in load and/or speed, the delay between the onset of both EMGs remains unchanged at constant speed and synchronization of MG with SOL is only observed when speed is increased above 140 rpm. These results suggest that the different muscles of the triceps surae make specific contributions to the development of the mechanical tension required to maintain or increase the speed of movement.  相似文献   

16.
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.  相似文献   

17.
To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the spectral range (13–30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals.  相似文献   

18.
Although the contributions of passive structures to stability of the elbow have been well documented, the role of active muscular resistance of varus and valgus loads at the elbow remains unclear. We hypothesized that muscles: (1) can produce substantial varus and valgus moments about the elbow, and (2) are activated in response to sustained varus and valgus loading of the elbow. To test the first hypothesis, we developed a detailed musculoskeletal model to estimate the varus and valgus moment-generating capacity of the muscles about the elbow. To test the second hypothesis, we measured EMGs from 11 muscles in four subjects during a series of isometric tasks that included flexion, extension, varus, and valgus moments about the elbow. The EMG recordings were used as inputs to the elbow model to estimate the contributions of individual muscles to flexion-extension and varus-valgus moments. Analysis of the model revealed that nearly all of the muscles that cross the elbow are capable of producing varus or valgus moments; the capacity of the muscles to produce varus moment (34 Nm) and valgus moment (35 Nm) is roughly half of the maximum flexion moment (70 Nm). Analysis of the measured EMGs showed that the anconeus was the most significant contributor to valgus moments and the pronator teres was the largest contributor to varus moments. Although our results show that muscles were activated in response to static varus and valgus loads, their activations were modest and were not sufficient to balance the applied load.  相似文献   

19.
To study joint contributions in manual wheelchair propulsion, we developed a three-dimensional model of the upper extremity. The model was applied to data collected in an experiment on a wheelchair ergometer in which mechanical advantage (MA) was manipulated. Five male able-bodied subjects performed two wheelchair exercise tests (external power output Pext = 0.25–0.50 W · kg−1) against increasing speeds (1.11–1.39–1.67 m.s−1), which simulated MA of 0.58–0.87. Results indicated a decrease in mechanical efficiency (ME) with increasing MA that could not be related to applied forces or joint torques. Increase in Pext was related to increases in joint torques. On the average, the highest torques were noted in shoulder flexion and adduction (35.6 and 24.6 N · m at MA = 0.58 and Pext= 0.50 W · kg−1). Peak elbow extension and flexion torques were −10.6 and 8.5 N · m. Based on the combination of torques and electromyographic (EMG) records of upper extremity muscles, anterior deltoid and pectoralis muscles are considered the prime movers in manual wheelchair propulsion. Coordinative aspects of manual wheelchair propulsion concerning the function of (biarticular) muscles in directing the propulsive forces and the redistribution of joint torques in a closed chain are discussed. We found no conclusive evidence for the role of elbow extensors in direction of propulsive forces.  相似文献   

20.
The purpose of this technical note is to present the design of an eight-channel telemetry system of dimensions and weight small enough to record muscular forces and EMGs simultaneously from gastrocnemius, soleus, plantaris and tibialis anterior muscles of a freely moving cat. All schematics for constructing the telemetry device are shown in detail. Using this system, we were successful in measuring force and EMG data of all four instrumented muscles in freely moving animals. The telemetry system presented here has the advantage over a conventional cable system that recordings may be obtained at any time in the freely moving animal without interference by an experimenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号