首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of perfusate on the contractile activity of an isolated internally perfused heart of Helix pomatia was studied. The changes in heart activity induced by the switching of the perfusate stream were more pronounced in a potassium-free solution when the Na+, K(+)-pump was inactivated. It was found that the decrease in the amplitude of contractions of snail heart by acetylcholine (5.10(-9) M) depends on the treatment of perfusate (Ringer solution) by mechanical vibrations (4, 10, 20, and 50 Hz; 90 dB). In the solution treated with 4 Hz mechanical vibrations, the inhibiting effect of acetylcholine decreased. A similar effect was observed after inactivating the Na+, K(+)-pump by ouabain (10(-4) M). Upon treating the solution by 10, 20, and 50 Hz mechanical vibrations, these changes were not observed. Based on the data, it is suggested that the water medium of the cell can serve as a target through which mechanical vibration can affect the cascade of cell metabolic processes.  相似文献   

2.
The effect of a constant magnetic field, an electromagnetic field, and low-frequency mechanical vibrations on specific electrical conductivity of distilled water was studied. Newly formed (fresh), three-day- and six-day-old distilled water was used. The exposure of distilled water to a constant magnetic field (2.5 mT), electromagnetic field (2.5 mT and 1-100 Hz), low-intensity mechanical vibrations (1-100 Hz) with an intensity of 30 Db led to a reduction of its specific electrical conductivity. It was found that, as water aged, the effect of these factors on the specific electrical conductivity decreased.  相似文献   

3.
4.
Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment. During the vibration, peak muscle force fell exponentially with successive forced elongations. After the episode, the muscle either extended itself or exerted a force against the tension transducer, depending on external conditions. The magnitude of this effect was proportional to the prior muscle stiffness and the amplitude of the vibration, indicating a recoil of strained connective tissue elements no longer opposed by cross-bridge forces. This behavior suggests that mechanical behavior at short lengths is dominated by tissue forces within a tensegrity-like structure made up of connective tissue, other extracellular matrix components, and active contractile elements.  相似文献   

5.
This study evaluated the effect of sinusoidal 50 Hz magnetic field on the basal and human chorionic gonadotropin (hCG)-stimulated testosterone (T) production of 48-h mouse Leydig cell culture. The luteinizing hormone (LH) analog hCG was used to check the T response of the controls and to evaluate the possible effect of the applied magnetic field on the steroidogenic capacity of the exposed cells. Leydig cells were obtained from the testes of 35- to 45-g CFLP mice and isolated by mechanical dissociation without enzyme treatment. The cell cultures were exposed to sinusoidal 50 Hz 100 μT (root mean square) AC magnetic field during the entire time of a 48-h incubation. Testosterone content of the culture media was measured by radioimmunoassay. In cultures exposed to the magnetic field, a marked increase of basal T production was found (P < .05), compared with the unexposed controls, whereas no significant difference was seen between the exposed or unexposed cultures in the presence of maximally stimulating concentration of hCG. These findings demonstrate that sinusoidal 50 Hz 100 μT magnetic fields are able to stimulate the basal T production of primary mouse Leydig cell culture, leaving the steroidogenic responsiveness to hCG unaltered. Bioelectromagnetics 19:429–431, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Internet of Things (IoT) is driving the development of new generation of sensors, communication components, and power sources. Ideally, IoT sensors and communication components are expected to be powered by sustainable energy source freely available in the environment. Here, a breakthrough in this direction is provided by demonstrating high output power energy harvesting from very low amplitude stray magnetic fields, which exist everywhere, through magnetoelectric (ME) coupled magneto‐mechano‐electric (MME) energy conversion. ME coupled MME harvester comprised of multiple layers of amorphous magnetostrictive material, piezoelectric macrofiber composite, and magnetic tip mass, interacts with an external magnetic field to generate electrical energy. Comprehensive experimental investigation and a theoretical model reveal that both the magnetic torque generated through magnetic loading and amplification of magneto‐mechanical vibration by ME coupling contributes toward the generation of high electrical power from the stray magnetic field around power cables of common home appliances. The generated electrical power from the harvester is sufficient for operating microsensors (gyro, temperature, and humidity sensing) and wireless data transmission systems. These results will facilitate the deployment of IoT devices in emerging intelligent infrastructures.  相似文献   

7.
Strain amplitude and strain rate dependent nonlinear behavior and load-induced mechanical property alterations of full-thickness bovine articular cartilage attached to bone were investigated in unconfined compression. A sequence of test compressions of finite deformation (ranging from 0.9% to 34.5% nominal strain) was performed at strain rates ranging from approximately 0.053%/s to 5.8%/s. Peak and equilibrium loads were analyzed to determine strain amplitude and strain rate dependence of linear versus nonlinear responses. The test protocol was designed to reveal changes in mechanical properties due to these finite deformations by interspersing small-amplitude witness ramps of approximately 1.1% deformation and approximately 0.44%/s strain rate between the test ramps ("witness" meaning to assess any mechanical property changes). We found that peak loads displayed high nonlinearity, stiffening with both increasing compression amplitude and more so with increasing strain rate. The response to witness ramps suggested that mechanical weakening occurred when compression amplitude reached 1.9-2.9% strain and beyond, and that weakening was much more significant at higher strain rate. These findings delineate regimes of linear versus nonlinear behavior of cartilage, and indicate the types of loads which can cause mechanical property alterations. Biological implications of this study are that strain amplitude and strain rate dependent stiffening may be essential to bear physiological loads and to protect cells and matrix from mechanical damage. Structural changes reflected by mechanical weakening at small compression could also initiate remodeling or disease processes.  相似文献   

8.
An experimental test constraining the intrinsic time scale of a primary physical mechanism that detects extremely-low-frequency (ELF) magnetic fields in biological systems is proposed. The suggested test postulates that a transductive mechanism operating on time scales much shorter than the period of an applied magnetic field cannot obtain any information about the exposure conditions other than the absolute magnitude of the field. By generating field exposures that differ in their vector properties but are equivalent in their time-varying absolute amplitude, it is possible to differentiate between two broad classes of mechanisms: 1) those with intrinsic time scales comparable with or longer than those of the external influence, and 2) those that are much faster than the period of the applied field. The hypothesis assumes an experimental model proven to respond to magnetic fields and sensitive to a change of about a factor of two in one of the field parameters (AC, DC amplitude or frequency). The case of general linearly polarized fields is discussed, and an analytical solution for the case of perpendicular AC/DC fields is given. Bioelectromagnetics 18:244–249, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

9.
In micro-organisms, as well as in metazoan cells, cellular polarization and directed migration are finely regulated by external stimuli, including mechanical stresses. The mechanisms sustaining the transduction of such external stresses into intracellular biochemical signals remain mainly unknown. Using an external magnetic tip, we generated a magnetic field gradient that allows migration analysis of cells submitted to local low-intensity magnetic forces (50 pN). We applied our system to the amoeba Entamoeba histolytica. Indeed, motility and chemotaxis are key activities that allow this parasite to invade and destroy the human tissues during amoebiasis. The magnetic force was applied either inside the cytoplasm or externally at the rear pole of the amoeba. We observed that the application of an intracellular force did not affect cell polarization and migration, whereas the application of the force at the rear pole of the cell induced a persistent polarization and strongly directional motion, almost directly opposed to the magnetic force. This phenomenon was completely abolished when phosphatidylinositol 3-kinase activity was inhibited by wortmanin. This result demonstrated that the applied mechanical stimulus was transduced and amplified into an intracellular biochemical signal, a process that allows such low-intensity force to strongly modify the migration behavior of the cell.  相似文献   

10.
Influence of the magnetic fields on frog sciatic nerve   总被引:1,自引:0,他引:1  
The constant magnetic field (1000–7120 gauss) was applied to previously stimulated frog sciatic nerve. The following was observed : a) There is no instantaneous effect of either parallel or perpendicular magnetic field on compound action potential amplitude. b) Parallel magnetic field of 1000–7120 gauss does not change the amplitude of compound action potential significantly with time. c) When perpendicular magnetic field was applied to the nerve, an increase in the amplitude of compound action potential was observed, which can mean that the nerve exhibits some sort of magnetic anisotropy.  相似文献   

11.
K Yue  R Guduru  J Hong  P Liang  M Nair  S Khizroev 《PloS one》2012,7(9):e44040
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm(-1) Oe(-1) in the aqueous solution) is 3×10(6) particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.  相似文献   

12.
Boxes were lifted and lowered repetitively at three different combinations of load and frequency. These combinations were chosen such that the total mechanical power generated was constant. Effects of the varying load or frequency conditions (but constant total mechanical power) on the rate of energy expenditure (M) and on the mechanical efficiency (ME) were measured. Mechanical power was determined from film analysis and separated into external power (generated to lift the load) and internal power (to raise the lifter's body mass). The M was determined from oxygen consumption measurements. The ME was calculated in two ways, depending on the definition of mechanical power, including either the external power only (MEext) or the total power output (MEtot). Despite a constant total mechanical power, M increased at higher loads and lower frequencies. This might be explained by the increasing isometric force required in postural and load control. The M increase resulted in a decrease of MEtot. However, at higher loads and lower frequencies MEext increased, indicating that more external work can be done at the same energy costs at higher loads or lower frequencies, which could be of interest from the point of view of occupational physiology. It would seem that at higher loads or lower frequencies the increased costs for isometric muscle action do not outweigh the benefit of raising the body less frequently. Furthermore, it was found that the MEext in lifting was much lower than the values reported for other kinds of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It has been shown that in smooth muscles of the freshwater bivalve molluscAnodonta cygnea as well as in skeletal muscles and brain striatum of rats a blocker of SH-groups,para-chlormercury benzoate (ChMB), and an alkylating agent,N-ethylmaleimide, inhibit both the basal adenylyl cyclase (AC) activity and the activity of the enzyme stimulated by non-hormonal agents (NaF, Gpp[NH]p) and by hormonal agents such as serotonin (mollusc muscles, rat brain) or isoproterenol (rat muscles and rat brain). The inhibitory effects of ChMB andN-ethylmaleimide on AC are partly eliminated by an SH-group containing reagent, β-mercaptoethanol (ME, 5 mM). Restoration of the basal and of the stimulated enzyme activity inhibited by ME is better in the case of the ChMB than of theN-ethylmaleimide action. It has also been found that ME stimulates both the basal and the stimulated by non-hormonal agents AC activity. In the presence of ME the hormonal stimulating effects on the enzyme are also preserved, except for the effect of isoproterenol on AC in rat skeletal muscles; this effect is inhibited by ME. Potentiation of the stimulating effect of the hormones on AC by Gpp[NH]p is only preserved in the molluscan smooth muscles (the effect of serotonin—90%). The data obtained indicate that cysteine sulfhydryl groups play a key role in hormonal regulation of the functional activity of the components of the hormone-sensitive adenylyl cyclase signaling system.  相似文献   

14.
Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 microm/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 microm/s of inlet fluid velocity and 1.45 Pas viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5)Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.  相似文献   

15.
For in vitro studies on the effect of extremely low frequency (ELF) magnetic field exposures in different laboratories, a programmable, high precision exposure system enabling blinded exposures has been developed and fully characterized. It is based on two shielded 4 coil systems that fit inside a commercial incubator. The volume of uniform B field exposure with 1% field tolerance is 50% larger compared to a Merrit 4 coil system with the same coil volume. The uncertainties for the applied magnetic fields have been specified to be less than 4%. The computer controlled apparatus allows signal waveforms that are composed of several harmonics, blind protocols, monitoring of exposure and environmental conditions and the application of B fields up to 3.6 mT root-mean-square amplitude. Sources of artifacts have been characterized: sham isolation >43 dB, parasitic incident E fields <1 V/m, no recognizable temperature differences in the media for exposure or sham state, and vibrations of the mechanically decoupled dish holder <0.1 m/s(2) (= 0.01 g), which is only twice the sham acceleration background level produced by the incubator and fan vibrations.  相似文献   

16.
The myofibroblastic differentiation of hepatic stellate cells (HSC) is a critical event in liver fibrosis and is part of the final common pathway to cirrhosis in chronic liver disease from all causes. The molecular mechanisms driving HSC differentiation are not fully understood. Because macroscopic tissue stiffening is a feature of fibrotic disease, we hypothesized that mechanical properties of the underlying matrix are a principal determinant of HSC activation. Primary rat HSC were cultured on inert polyacrylamide supports of variable but precisely defined shear modulus (stiffness) coated with different extracellular matrix proteins or poly-L-lysine. HSC differentiation was determined by cell morphology, immunofluorescence staining, and gene expression. HSC became progressively myofibroblastic as substrate stiffness increased on all coating matrices, including Matrigel. The degree rather than speed of HSC activation correlated with substrate stiffness, with cells cultured on supports of intermediate stiffness adopting stable intermediate phenotypes. Quiescent cells on soft supports were able to undergo myofibroblastic differentiation with exposure to stiff supports. Stiffness-dependent differentiation required adhesion to matrix proteins and the generation of mechanical tension. Transforming growth factor-β treatment enhanced differentiation on stiff supports, but was not required. HSC differentiate to myofibroblasts in vitro primarily as a function of the physical rather than the chemical properties of the substrate. HSC require a mechanically stiff substrate, with adhesion to matrix proteins and the generation of mechanical tension, to differentiate. These findings suggest that alterations in liver stiffness are a key factor driving the progression of fibrosis.  相似文献   

17.
Most studies about human responses to mechanical vibrations involve whole-body vibration and vibration applied perpendicularly to the tendon or muscle. The aim of the present study was to verify the effects of mechanical vibration applied in the opposite direction of muscle shortening on maximal isometric strength of the flexor muscles of the elbow due to neural factors. Conventional isometric training with maximal isometric contractions (MVCs) and isometric training with vibrations were compared. Nineteen untrained males, ages 24 +/- 3.28 years, were divided into 2 training groups. Group 1 performed conventional isometric training and group 2 isometric training with mechanical vibrations (frequency of 8 Hz and amplitude of 6 mm). Both groups executed 12 MVCs with a duration of 6 seconds and 2-minute intervals between the repetitions. The subjects trained 3 times per week for 4 weeks. The strength of the group subjected to vibrations increased significantly by 26 +/- 11% (p < 0.05), whereas the strength of the group with conventional isometric training increased only 10 +/- 5% (p < 0.05). These data suggest that training with vibrations applied in the opposite direction of muscle shortening enhances the mechanism of involuntary control of muscle activity and may improve strength in untrained males. Since these findings were in untrained males, further studies with athletes are necessary in order to generalize the results to athletes' training, although it seems that it would be possible.  相似文献   

18.
The tissues of the body are routinely subjected to various forms of mechanical vibration, the frequency, amplitude, and duration of which can contribute both positively and negatively to human health. The vocal cords, which are in close proximity to the thyroid, may also supply the thyroid with important mechanical signals that modulate hormone production via mechanical vibrations from phonation. In order to explore the possibility that vibrational stimulation from vocalization can enhance thyroid epithelial cell function, FRTL-5 rat thyroid cells were subjected to either chemical stimulation with thyroid stimulating hormone (TSH), mechanical stimulation with physiological vibrations, or a combination of the two, all in a well-characterized, torsional rheometer-bioreactor. The FRTL-5 cells responded to mechanical stimulation with significantly (p<0.05) increased metabolic activity, significantly (p<0.05) increased ROS production, and increased gene expression of thyroglobulin and sodium-iodide symporter compared to un-stimulated controls, and showed an equivalent or greater response than TSH only stimulated cells. Furthermore, the combination of TSH and oscillatory motion produced a greater response than mechanical or chemical stimulation alone. Taken together, these results suggest that mechanical vibrations could provide stimulatory cues that help maintain thyroid function.  相似文献   

19.
Activation and Inactivation of Mechanosensitive Currents in the Chick Heart   总被引:2,自引:0,他引:2  
The behavior of MS channels in embryonic chick ventricular myocytes activated by direct mechanical stimulation is strongly affected by inactivation. The amplitude of the current is dependent not only on the amplitude of the stimulus, but also the history of stimulation. The MS current inactivation appears to be composed of at least two contributions: (i) rearrangement of the cortical tension transducing elements and (ii) blocking action of an autocrine agent released from the cell. With discrete mechanical stimuli, the MS current amplitude in the second press of a double press protocol was always smaller than the amplitude of the first MS current. Occasionally, a large MS current occurred when the cell was first stimulated, but subsequently the cell became unresponsive. For a series of stimuli of varying amplitudes, the order in which they were applied to the cell affected the size of the observed MS current for a given stimulus magnitude. When continuous sinusoidal stimulation was applied to the cells, the MS current envelope either reached a steady state, or inactivated. With sinusoidal stimulation, the MS response could be enhanced or restored by simple perfusion of fluid across the cell. This suggests that mechanical stimulation of the cells produces an autocrine inhibitor of MS channels as well as resulting in cortical rearrangement. Received: 7 July 1999/Revised: 26 October 1999  相似文献   

20.
We recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. We report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 μT. These anomalies often culminate in the complete disaggregation of the organism. Similar to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 μV/m. The addition of either 51.1 or 78.4 μT DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas our previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling. These results together with those reported previously point to two distinct physiological effects produced in regenerating planaria by exposure to weak extremely-low-frequency (ELF) magnetic fields. They further suggest that the planarian, which has recently been identified elsewhere as an excellent system for use in teratogenic investigations involving chemical teratogens, might be used similarly in teratogenic investigations involving ELF magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号