首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   

2.
Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B‐cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome‐wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10−8), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10−6), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10−8), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.  相似文献   

3.
Biological age measures outperform chronological age in predicting various aging outcomes, yet little is known regarding genetic predisposition. We performed genome‐wide association scans of two age‐adjusted biological age measures (PhenoAgeAcceleration and BioAgeAcceleration), estimated from clinical biochemistry markers (Levine et al., 2018; Levine, 2013) in European‐descent participants from UK Biobank. The strongest signals were found in the APOE gene, tagged by the two major protein‐coding SNPs, PhenoAgeAccel—rs429358 (APOE e4 determinant) (p = 1.50 × 10−72); BioAgeAccel—rs7412 (APOE e2 determinant) (p = 3.16 × 10−60). Interestingly, we observed inverse APOE e2 and e4 associations and unique pathway enrichments when comparing the two biological age measures. Genes associated with BioAgeAccel were enriched in lipid related pathways, while genes associated with PhenoAgeAccel showed enrichment for immune system, cell function, and carbohydrate homeostasis pathways, suggesting the two measures capture different aging domains. Our study reaffirms that aging patterns are heterogeneous across individuals, and the manner in which a person ages may be partly attributed to genetic predisposition.  相似文献   

4.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a nuclear chromatin‐associated enzyme involved in the DNA damage response. SNP rs1136410 C>T, the most studied polymorphism in PARP‐1 gene, is highly implicated in the susceptibility of cancer. However, the roles of PARP‐1 rs1136410 C>T on cancer risk vary from different studies. We comprehensively screened all qualified publications from several databases, including PubMed, EMBASE, MEDLINE, CNKI and Wanfang. The searching was updated to April 2020. Our meta‐analysis included 60 articles with 65 studies, comprised of a total of 23 996 cases with cancer and 33 015 controls. Overall, pooled data showed that the PARP‐1 rs1136410 C>T polymorphism was significantly but a border‐line associated with an increased risk of overall cancer (CC vs. TT/TC: OR = 1.11, 95% CI = 1.00‐1.24; C vs T: OR = 1.07, 95% CI = 1.01‐1.14). Subgroup analysis indicated that rs1136410 C allele contributed to high risk among gastric, thyroid, and cervical cancer, but lower risk among brain cancer. Furthermore, increased cancer risk was detected in the subgroups of Asian, controls from population‐based design studies, and HWE ≤ 0.05 studies. Sensitivity analysis and Egger''s test showed that results of the meta‐analysis were fairly stable. The current study indicated that PARP1 rs1136410 C>T polymorphism may have an impact on certain types of cancer susceptibility.  相似文献   

5.
There is growing interest in studying the genetic contributions to longevity, but limited relevant genes have been identified. In this study, we performed a genetic association study of longevity in a total of 15,651 Chinese individuals. Novel longevity loci, BMPER (rs17169634; p = 7.91 × 10−15) and TMEM43/XPC (rs1043943; p = 3.59 × 10−8), were identified in a case–control analysis of 11,045 individuals. BRAF (rs1267601; p = 8.33 × 10−15) and BMPER (rs17169634; p = 1.45 × 10−10) were significantly associated with life expectancy in 12,664 individuals who had survival status records. Additional sex‐stratified analyses identified sex‐specific longevity genes. Notably, sex‐differential associations were identified in two linkage disequilibrium blocks in the TOMM40/APOE region, indicating potential differences during meiosis between males and females. Moreover, polygenic risk scores and Mendelian randomization analyses revealed that longevity was genetically causally correlated with reduced risks of multiple diseases, such as type 2 diabetes, cardiovascular diseases, and arthritis. Finally, we incorporated genetic markers, disease status, and lifestyles to classify longevity or not‐longevity groups and predict life span. Our predictive models showed good performance (AUC = 0.86 for longevity classification and explained 19.8% variance of life span) and presented a greater predictive efficiency in females than in males. Taken together, our findings not only shed light on the genetic contributions to longevity but also elucidate correlations between diseases and longevity.  相似文献   

6.
Breast cancer is the most common malignancy among women in worldwide including Japan. Several studies have identified common genetic variants to be associated with the risk of breast cancer. Due to the complex linkage disequilibrium structure and various environmental exposures in different populations, it is essential to identify variants associated with breast cancer in each population, which subsequently facilitate the better understanding of mammary carcinogenesis. In this study, we conducted a genome-wide association study (GWAS) as well as whole-genome imputation with 2,642 cases and 2,099 unaffected female controls. We further examined 13 suggestive loci (P<1.0×10−5) using an independent sample set of 2,885 cases and 3,395 controls and successfully validated two previously-reported loci, rs2981578 (combined P-value of 1.31×10−12, OR = 1.23; 95% CI = 1.16–.30) on chromosome 10q26 (FGFR2), rs3803662 (combined P-value of 2.79×10−11, OR = 1.21; 95% CI = 1.15–.28) and rs12922061 (combined P-value of 3.97×10−10, OR = 1.23; 95% CI = 1.15–.31) on chromosome 16q12 (TOX3-LOC643714). Weighted genetic risk score on the basis of three significantly associated variants and two previously reported breast cancer associated loci in East Asian population revealed that individuals who carry the most risk alleles in category 5 have 2.2 times higher risk of developing breast cancer in the Japanese population than those who carry the least risk alleles in reference category 1. Although we could not identify additional loci associated with breast cancer, our study utilized one of the largest sample sizes reported to date, and provided genetic status that represent the Japanese population. Further local and international collaborative study is essential to identify additional genetic variants that could lead to a better, accurate prediction for breast cancer.  相似文献   

7.
Takayasu arteritis (TAK) is an autoimmune systemic vasculitis of unknown etiology. Although previous studies have revealed that HLA-B52:01 has an effect on TAK susceptibility, no other genetic determinants have been established so far. Here, we performed genome scanning of 167 TAK cases and 663 healthy controls via Illumina Infinium Human Exome BeadChip arrays, followed by a replication study consisting of 212 TAK cases and 1,322 controls. As a result, we found that the IL12B region on chromosome 5 (rs6871626, overall p = 1.7 × 10−13, OR = 1.75, 95% CI 1.42–2.16) and the MLX region on chromosome 17 (rs665268, overall p = 5.2 × 10−7, OR = 1.50, 95% CI 1.28–1.76) as well as the HLA-B region (rs9263739, a proxy of HLA-B52:01, overall p = 2.8 × 10−21, OR = 2.44, 95% CI 2.03–2.93) exhibited significant associations. A significant synergistic effect of rs6871626 and rs9263739 was found with a relative excess risk of 3.45, attributable proportion of 0.58, and synergy index of 3.24 (p ≤ 0.00028) in addition to a suggestive synergistic effect between rs665268 and rs926379 (p ≤ 0.027). We also found that rs6871626 showed a significant association with clinical manifestations of TAK, including increased risk and severity of aortic regurgitation, a representative severe complication of TAK. Detection of these susceptibility loci will provide new insights to the basic mechanisms of TAK pathogenesis. Our findings indicate that IL12B plays a fundamental role on the pathophysiology of TAK in combination with HLA-B52:01 and that common autoimmune mechanisms underlie the pathology of TAK and other autoimmune disorders such as psoriasis and inflammatory bowel diseases in which IL12B is involved as a genetic predisposing factor.  相似文献   

8.
IntroductionAlthough rheumatoid arthritis (RA) is generally a chronic disease, a proportion of RA-patients achieve disease-modifying antirheumatic drug (DMARD)-free sustained remission, reflecting loss of disease-persistence. To explore mechanisms underlying RA-persistence, we performed a candidate gene study. We hypothesized that variants associating with lack of radiographic progression also associate with DMARD-free sustained remission.Methods645 Dutch RA-patients were studied on DMARD-free sustained remission during a maximal follow-up duration of 10-years. Variants associated with radiographic progression under an additive model in the total RA-population (Human Leukocyte Antigens (HLA)-DRB1-shared epitope (SE), Dickkopf-1 (DKK1)-rs1896368, DKK1-rs1896367, DKK1-rs1528873, C5Orf30-rs26232, Interleukin-2 receptor-α (IL2RA)-rs2104286, Matrix metalloproteinase-9 (MMP-9)-rs11908352, rs451066 and Osteoprotegerin (OPG)-rs1485305) were studied. Cox-regression analyses were performed and Bonferroni correction applied. Soluble IL2Rα (sIL2Rα)-levels were studied. For replication, 622 RA-patients included in the French Evaluation et Suivi de POlyarthrites Indifférenciées Récentes cohort (ESPOIR)-cohort were investigated. Results were combined in inverse-variance weighted meta-analysis.ResultsSimilar as previously reported, the SE-alleles associated with less remission (hazard ratio (HR) = 0.57, 95 % confidence interval (95 % CI) = 0.42-0.77, p = 2.72×10−4). Variants in DKK-1, C5orf30, MMP-9 and OPG were not associated with remission. The IL2RA-rs2104286 minor allele associated with a higher chance on remission (HR = 1.52, 95 % CI = 1.16-1.99, p = 2.44×10−3). The rs2104286 minor allele associated with lower sIL2Rα-levels (p = 1.44×10−3); lower sIL2Rα-levels associated with a higher chance on remission (HR per 100 pg/L = 0.81, 95 % CI = 0.68-0.95, p = 0.012). When including rs2104286 and sIL2Rα-levels in one analysis, the HR for rs2104286 was 2.27 (95 % CI = 1.06-4.84, p = 0.034) and for sIL2Rα 0.83 (95 % CI = 0.70-0.98, p = 0.026). Within ESPOIR, the HR of rs2104286 was 1.31 (95 % CI = 0.90-1.90). The meta-analysis revealed a p-value of 1.01×10−3.ConclusionIL2RA-rs2104286 and sIL2Rα-level associated with RA-persistence. IL2RA variants are known to protect against multiple sclerosis, diabetes mellitus and RA. Besides HLA-SE, IL2RA-rs2104286 is thus far the only known genetic variant associated with both joint destruction and RA-persistence. This underlines the relevance of IL2RA for RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0739-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
《PloS one》2013,8(4)
Multiple sclerosis (MS) is a serious, incurable neurological disease. In 2009, the ANZgene studies detected the suggestive association of located upstream of CD40 gene in chromosome 20q13 (p = 1.3×10−7). Identification of the causal variant(s) in the CD40 locus leads to a better understanding of the mechanism underlying the development of autoimmune pathologies. We determined the genotypes of rs6074022, rs1883832, rs1535045, and rs11086996 in patients with MS (n = 1684) and in the control group (n = 879). Two SNPs were significantly associated with MS: rs6074022 (additive model C allele OR = 1.27, 95% CI = [1.12–1.45], p = 3×10−4) and rs1883832 (additive model T allele OR = 1.20, 95% CI = [1.05–1.38], p = 7×10−3). In the meta-analysis of our results and the results of four previous studies, we obtain the association p-value of 2.34×10−12, which confirmed the association between MS and rs6074022 at a genome-wide significant level. Next, we demonstrated that the model including rs6074022 only sufficiently described the association. From our analysis, we can speculate that the association between rs1883832 and MS was induced by LD, whereas rs6074022 was a marker in stronger LD with the functional variant or was the functional variant itself. Our results indicated that the functional variants were located in the upstream region of the gene CD40 and were in higher LD with rs6074022 than LD with rs1883832.  相似文献   

10.
Takayasu arteritis is a rare inflammatory disease of large arteries. The etiology of Takayasu arteritis remains poorly understood, but genetic contribution to the disease pathogenesis is supported by the genetic association with HLA-B52. We genotyped ∼200,000 genetic variants in two ethnically divergent Takayasu arteritis cohorts from Turkey and North America by using a custom-designed genotyping platform (Immunochip). Additional genetic variants and the classical HLA alleles were imputed and analyzed. We identified and confirmed two independent susceptibility loci within the HLA region (r2 < 0.2): HLA-B/MICA (rs12524487, OR = 3.29, p = 5.57 × 10−16) and HLA-DQB1/HLA-DRB1 (rs113452171, OR = 2.34, p = 3.74 × 10−9; and rs189754752, OR = 2.47, p = 4.22 × 10−9). In addition, we identified and confirmed a genetic association between Takayasu arteritis and the FCGR2A/FCGR3A locus on chromosome 1 (rs10919543, OR = 1.81, p = 5.89 × 10−12). The risk allele in this locus results in increased mRNA expression of FCGR2A. We also established the genetic association between IL12B and Takayasu arteritis (rs56167332, OR = 1.54, p = 2.18 × 10−8).  相似文献   

11.
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.  相似文献   

12.

Background

Autoimmune thyroid disease (AITD) comprises diseases including Hashimoto''s thyroiditis and Graves'' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD.

Methods

Polymorphisms in the IL6-174 G/C (rs1800795), TNFA-308 G/A (rs1800629), IL1B-511 C/T (rs16944), and IFNGR1-56 T/C (rs2234711) genes were assessed in a case-control study comprising 420 Hashimoto''s thyroiditis patients, 111 Graves'' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays.

Results

A significant association was found between the allele A in TNFA-308 G/A and Hashimoto''s thyroiditis, both in the dominant (OR = 1.82, CI = 1.37–2.43, p-value = 4.4×10−5) and log-additive (OR = 1.64, CI = 1.28–2.10, p-value = 8.2×10−5) models. The allele C in IL6-174 G/C is also associated with Hashimoto''s thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06–1.54, p-value = 8.9×10−3). The group with Graves'' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19–2.87, p-value = 7.0×10−3) and log-additive (OR = 1.69, CI = 1.17–2.44, p-value = 6.6×10−3) models. The risk for Hashimoto''s thyroiditis and Graves'' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59).

Conclusions

This study reports significant associations of genetic variants in TNFA and IL6 with the risk for AITD, highlighting the relevance of polymorphisms in inflammation-related genes in the etiopathogenesis of AITD.  相似文献   

13.
The association between IGF‐1 levels and mortality in humans is complex with low levels being associated with both low and high mortality. The present meta‐analysis investigates this complex relationship between IGF‐1 and all‐cause mortality in prospective cohort studies. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, and Cochrane Library up to September 2019. Published studies were eligible for the meta‐analysis if they had a prospective cohort design, a hazard ratio (HR) and 95% confidence interval (CI) for two or more categories of IGF‐1 and were conducted among adults. A random‐effects model with a restricted maximum likelihood heterogeneity variance estimator was used to find combined HRs for all‐cause mortality. Nineteen studies involving 30,876 participants were included. Meta‐analysis of the 19 eligible studies showed that with respect to the low IGF‐1 category, higher IGF‐1 was not associated with increased risk of all‐cause mortality (HR = 0.84, 95% CI = 0.68–1.05). Dose–response analysis revealed a U‐shaped relation between IGF‐1 and mortality HR. Pooled results comparing low vs. middle IGF‐1 showed a significant increase of all‐cause mortality (HR = 1.33, 95% CI = 1.14–1.57), as well as comparing high vs. middle IGF‐1 categories (HR = 1.23, 95% CI = 1.06–1.44). Finally, we provide data on the association between IGF‐1 levels and the intake of proteins, carbohydrates, certain vitamins/minerals, and specific foods. Both high and low levels of IGF‐1 increase mortality risk, with a specific 120–160 ng/ml range being associated with the lowest mortality. These findings can explain the apparent controversy related to the association between IGF‐1 levels and mortality.  相似文献   

14.
This study aimed to explore the function of IFN‐γ+IL‐17+Th17 cells on fibrosis in systemic scleroderma (SSc). Blood and skin samples were collected from 20 SSc cases and 10 healthy individuals. The percentage of IFN‐γ+IL‐17+Th17 cells was detected using flow cytometry. The in vitro induction of IFN‐γ+IL‐17+Th17 cells was performed adopting PHA and rIL‐12. Gene expression was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR), whereas western blot analysis was adopted for protein analysis. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with SSc stages (P = .031), disease duration (P = .016), activity (P = .025) and skin scores (P < .001). In vitro, IFN‐γ+IL‐17+Th17 cells could promote the expressions of α‐SMA and COL1A1, revealing increased fibroblasts’ proliferation and enhanced collagen‐secreting capacity. In addition, IL‐21 expression was significantly increased in co‐culture medium of IFN‐γ+IL‐17+Th17 cells and fibroblasts (P < .001). IL‐21 neutralizer treatment resulted in the down‐regulation of α‐SMA and COL1A1. IL‐21 was confirmed as an effector of IFN‐γ+IL‐17+Th17 cells in fibrosis process. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with disease activity. IFN‐γ+IL‐17+Th17 cells could promote fibroblast proliferation and enhance collagen‐secreting ability via producing IL‐21, thus contributing to fibrosis in SSc.  相似文献   

15.
《PloS one》2012,7(12)
Genome-wide association studies (GWAS) have successfully identified a number of single-nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG) is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI). With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10−4). For the known locus rs10795668 (10p14), we found an interacting SNP rs367615 (5q21) with replication p = 0.01 and combined p = 4.19×10−8. Among the top marginal SNPs after LD pruning (n = 163), we identified an interaction between rs1571218 (20p12.3) and rs10879357 (12q21.1) (nominal combined p = 2.51×10−6; Bonferroni adjusted p = 0.03). Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.  相似文献   

16.
Longevity is highly variable among animal species and has coevolved with other life‐history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life‐history traits independent of body size are largely underexplored for birds. To test associations of life‐history traits and telomere dynamics, we conducted a phylogenetic meta‐analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life‐history traits. We examined 3 principal components of 12 life‐history variables that represented: body size (PC1), the slow–fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small‐to‐medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life‐history variables. TROC, however, was negatively and moderate‐to‐strongly associated with PC2 (unadjusted r = −.340; with phylogenetic correction, r = −.490). Independent of body size, long‐lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian‐related species, yet telomere dynamics are strongly linked to the pace of life.  相似文献   

17.
Observational studies have revealed associations between short leucocyte telomere length (LTL), a TL marker in somatic tissues and multiple Metabolic Syndrome (MetS) traits. Animal studies have supported these findings by showing that increased telomere attrition leads to adipose tissue dysfunction and insulin resistance. We investigated the associations between genetically instrumented LTL and MetS traits using Mendelian Randomisation (MR). Fifty‐two independent variants identified at FDR<0.05 from a genome‐wide association study (GWAS) including 78,592 Europeans and collectively accounting for 2.93% of LTL variance were selected as genetic instruments for LTL. Summary‐level data for MetS traits and for the MetS as a binary phenotype were obtained from the largest publicly available GWAS and two‐sample MR analyses were used to estimate the associations of LTL with these traits. The combined effect of the genetic instruments was modelled using inverse variance weighted regression and sensitivity analyses with MR‐Egger, weighted‐median and MR‐PRESSO were performed to test for and correct horizonal pleiotropy. Genetically instrumented longer LTL was associated with higher waist‐to‐hip ratio adjusted for body mass index (β = 0.045 SD, SE = 0.018, p = 0.01), raised systolic (β = 1.529 mmHg, SE = 0.332, p = 4x10−6) and diastolic (β = 0.633 mmHg, SE = 0.222, p = 0.004) blood pressure, and increased MetS risk (OR = 1.133, 95% CI 1.057–1.215). Consistent results were obtained in sensitivity analyses, which provided no evidence of unbalanced horizontal pleiotropy. Telomere shortening might not be a major driver of cellular senescence and dysfunction in human adipose tissue. Future experimental studies should examine the mechanistic bases for the links between longer LTL and increased upper‐body fat distribution and raised blood pressure.  相似文献   

18.
For the identification of susceptibility loci for primary biliary cirrhosis (PBC), a genome-wide association study (GWAS) was performed in 963 Japanese individuals (487 PBC cases and 476 healthy controls) and in a subsequent replication study that included 1,402 other Japanese individuals (787 cases and 615 controls). In addition to the most significant susceptibility region, human leukocyte antigen (HLA), we identified two significant susceptibility loci, TNFSF15 (rs4979462) and POU2AF1 (rs4938534) (combined odds ratio [OR] = 1.56, p = 2.84 × 10−14 for rs4979462, and combined OR = 1.39, p = 2.38 × 10−8 for rs4938534). Among 21 non-HLA susceptibility loci for PBC identified in GWASs of individuals of European descent, three loci (IL7R, IKZF3, and CD80) showed significant associations (combined p = 3.66 × 10−8, 3.66 × 10−9, and 3.04 × 10−9, respectively) and STAT4 and NFKB1 loci showed suggestive association with PBC (combined p = 1.11 × 10−6 and 1.42 × 10−7, respectively) in the Japanese population. These observations indicated the existence of ethnic differences in genetic susceptibility loci to PBC and the importance of TNF signaling and B cell differentiation for the development of PBC in individuals of European descent and Japanese individuals.  相似文献   

19.

Objective

Genome wide association studies (GWAs) of breast cancer mortality have identified few potential associations. The concordance between these studies is unclear. In this study, we used a meta-analysis of two prognostic GWAs and a replication cohort to identify the strongest associations and to evaluate the loci suggested in previous studies. We attempt to identify those SNPs which could impact overall survival irrespective of the age of onset.

Methods

To facilitate the meta-analysis and to refine the association signals, SNPs were imputed using data from the 1000 genomes project. Cox-proportional hazard models were used to estimate hazard ratios (HR) in 536 patients from the POSH cohort (Prospective study of Outcomes in Sporadic versus Hereditary breast cancer) and 805 patients from the HEBCS cohort (Helsinki Breast Cancer Study). These hazard ratios were combined using a Mantel-Haenszel fixed effects meta-analysis and a p-value threshold of 5×10−8 was used to determine significance. Replication was performed in 1523 additional patients from the POSH study.

Results

Although no SNPs achieved genome wide significance, three SNPs have significant association in the replication cohort and combined p-values less than 5.6×10−6. These SNPs are; rs421379 which is 556 kb upstream of ARRDC3 (HR = 1.49, 95% confidence interval (CI) = 1.27–1.75, P = 1.1×10−6), rs12358475 which is between ECHDC3 and PROSER2 (HR = 0.75, CI = 0.67–0.85, P = 1.8×10−6), and rs1728400 which is between LINC00917 and FOXF1.

Conclusions

In a genome wide meta-analysis of two independent cohorts from UK and Finland, we identified potential associations at three distinct loci. Phenotypic heterogeneity and relatively small sample sizes may explain the lack of genome wide significant findings. However, the replication at three SNPs in the validation cohort shows promise for future studies in larger cohorts. We did not find strong evidence for concordance between the few associations highlighted by previous GWAs of breast cancer survival and this study.  相似文献   

20.
Angiotensinogen (AGT), its active fragments and microRNA-31 (miR-31) play an important role in adipocyte differentiation. AGT contains a miR-31 polymorphic binding site. We hypothesize that the rs7079 polymorphism in the miR-31/584 binding site of the AGT gene could influence body fat distribution. A total of 751 subjects (195 men, 556 women) were enrolled in the study. The rs7079 genotypes were determined by qRT-PCR. Anthropometric measurements were taken on all subjects, who were subsequently divided into two groups: obese (>30 kg m−2) and non-obese (<30 kg m−2). Linear regression models were created to determine the contributions of sex, obesity status and rs7079 to all measured parameters. Adding the rs7079 genotype significantly contributed to the linear regression model for waist circumference (p = 0.013), hip circumference (p = 0.018) and supraspinal skin-fold thickness (p = 1 × 10−3). Differences between sexes and between the obese and non-obese groups were observed. Waist circumference was lower in men carrying the A allele (p = 0.022); hip circumference was higher only in obese women carrying the A allele (p = 0.015). While men carrying the A allele had lower supraspinal skin-fold thickness (p = 0.022), this parameter was found to be higher in A allele carrying women (p = 3 × 10−3). The higher total sum of skin-fold thickness in A allele carrying women was restricted to obese individuals (p = 0.028). The presence of the A allele was associated with both lower tricipital skin-fold thickness in non-obese women (p = 0.023) and a trend of higher thickness in non-obese men (p = 0.065). Significant associations of rs7079 in the AGT gene and body fat distribution were observed. The distribution followed opposing patterns in both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号