首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is activated by various noxious or irritant substances in nature, including spicy compounds. Many TRPA1 chemical activators have been reported; however, only limited information is available regarding the amino acid residues that contribute to the activation by non-electrophilic activators, whereas activation mechanisms by electrophilic ligands have been well characterized. We used intracellular Ca2+ measurements and whole-cell patch clamp recordings to show that eudesmol, an oxygenated sesquiterpene present at high concentrations in the essential oil of hop cultivar Hallertau Hersbrucker, could activate human TRPA1. Gradual activation of inward currents with outward rectification by eudesmol was observed in human embryonic kidney-derived 293 cells expressing human TRPA1. This activation was completely blocked by a TRPA1-specific inhibitor, HC03–0031. We identified three critical amino acid residues in human TRPA1 in putative transmembrane domains 3, 4, and 5, namely threonine at 813, tyrosine at 840, and serine at 873, for activation by β-eudesmol in a systematic mutational study. Our results revealed a new TRPA1 activator in hop essential oil and provide a novel insight into mechanisms of human TRPA1 activation by non-electrophilic chemicals.  相似文献   

2.
The role of genetic modifications of the TRPA1 receptor has been well documented in inflammatory and neuropathic pain. We recently reported that the E179K variant of TRPA1 appears to be crucial for the generation of paradoxical heat sensation in pain patients. Here, we describe the consequences of the single amino acid exchange at position 179 in the ankyrin repeat 4 of human TRPA1. TRPA1 wild type Lys-179 protein expressed in HEK cells exhibited intact biochemical properties, inclusive trafficking into the plasma membrane, formation of large protein complexes, and the ability to be activated by cold. Additionally, a strong increase of Lys-179 protein expression was observed in cold (4 °C) and heat (49 °C)-treated cells. In contrast, HEK cells expressing the variant Lys-179 TRPA1 failed to get activated by cold possibly due to the loss of ability to interact with other proteins or other TRPA1 monomers during oligomerization. In conclusion, the detailed understanding of TRPA1 genetic variants might provide a fruitful strategy for future development of pain treatments.  相似文献   

3.
Fourier transform infrared spectromicroscopy provides label-free imaging to detect the spatial distribution of the characteristic functional groups in proteins, lipids, phosphates, and carbohydrates simultaneously in individual DRG neurons. We have identified ring-shaped distributions of lipid and/or carbohydrate enrichment in subpopulations of neurons which has never before been reported. These distributions are ring-shaped within the cytoplasm and are likely representative of the endoplasmic reticulum. The prevalence of chemical ring subtypes differs between large- and small-diameter neurons. Peripheral inflammation increased the relative lipid content specifically in small-diameter neurons, many of which are nociceptive. Because many small-diameter neurons express an ion channel involved in inflammatory pain, transient receptor potential ankyrin 1 (TRPA1), we asked whether this increase in lipid content occurs in TRPA1-deficient (knock-out) neurons. No statistically significant change in lipid content occurred in TRPA1-deficient neurons, indicating that the inflammation-mediated increase in lipid content is largely dependent on TRPA1. Because TRPA1 is known to mediate mechanical and cold sensitization that accompanies peripheral inflammation, our findings may have important implications for a potential role of lipids in inflammatory pain.  相似文献   

4.
Geng J  Liang D  Jiang K  Zhang P 《PloS one》2011,6(12):e28644
TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of "heat vision" in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing.  相似文献   

5.
The transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1.  相似文献   

6.
Animals detect heat using thermosensitive transient receptor potential (TRP) channels. In insects, these include TRP ankyrin 1 (TRPA1), which in mosquitoes is crucial for noxious heat avoidance and thus is an appealing pest control target. However, the molecular basis for heat-evoked activation has not been fully elucidated, impeding both studies of the molecular evolution of temperature sensitivity and rational design of inhibitors. In TRPA1 and other thermosensitive TRPs, the N-terminal cytoplasmic ankyrin repeat (AR) domain has been suggested to participate in heat-evoked activation, but the lack of a structure containing the full AR domain has hindered our mechanistic understanding of its role. Here, we focused on elucidating the structural basis of apparent temperature threshold determination by taking advantage of two closely related mosquito TRPA1s from Aedes aegypti and Culex pipiens pallens with 86.9% protein sequence identity but a 10 °C difference in apparent temperature threshold. We identified two positions in the N-terminal cytoplasmic AR domain of these proteins, E417 (A. aegypti)/Q414 (C. pipiens) and R459 (A. aegypti)/Q456 (C. pipiens), at which a single exchange of amino acid identity was sufficient to change apparent thresholds by 5 to 7 °C. We further found that the role of these positions is conserved in TRPA1 of a third related species, Anopheles stephensi. Our results suggest a structural basis for temperature threshold determination as well as for the evolutionary adaptation of mosquito TRPA1 to the wide range of climates inhabited by mosquitoes.  相似文献   

7.
Ankyrin is an essential link between cytoskeletal proteins, such as spectrin, and membrane bound proteins, such as protein 3, the erythrocyte anion exchanger. Although the amino acid structure of human ankyrin is known, the functional regions have been only partially defined. Sequence comparisons between mouse and human ankyrin offer one mechanism of identifying highly conserved regions that probably have functional significance. We report the isolation and sequencing of a series of overlapping murine erythroid ankyrin (Ank-1) cDNAs from spleen and reticulocyte libraries (total span 6238 bp) and identify potentially important regions of murine-human reticulocyte ankyrin homology. Comparison of the predicted peptide sequences of mouse and human erythroid ankyrins shows that these ankyrins are highly conserved in both the N-terminal, protein 3 binding domain (96% amino acid identity) and in the central spectrin-binding domain (97% identity), but differ in the C-terminal regulatory domain (79% identity). However, the C-terminal regulatory domain contains two regions of peptide sequence that are perfectly conserved. We postulate these regions are important in the regulatory functions of this domain.  相似文献   

8.
Extracellular influx of calcium or release of calcium from intracellular stores have been shown to activate mammalian TRPA1 as well as to sensitize and desensitize TRPA1 electrophilic activation. Calcium binding sites on both intracellular N- and C-termini have been proposed. Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). Thus, calcium alone activates hTRPA1 by a direct interaction with binding sites outside the N-ARD.  相似文献   

9.
The intestinal pathogen Giardia lamblia possesses several unusual organelle features, including two equivalent nuclei, no mitochondria or peroxisomes, and a developmentally regulated rough endoplasmic reticulum and Golgi. Giardia also possesses a number of complex and unique cytoskeleton structures that dictate cell shape, motility and attachment. Our investigations of cytoskeletal proteins have revealed the presence of a new protein family. Proteins in this family contain both ankyrin repeats and coiled-coil domains; although these are common protein motifs, their pairing is unique, thus establishing a new class of head-stalk proteins. Examination of the G. lamblia genome shows evidence for at least 18 genes coding for proteins with a series of ankyrin repeats followed by a lengthy coiled-coil domain and at least an additional 14 genes coding for proteins with a prominent coiled-coil domain flanked by two series of ankyrin repeats. We have examined one of these proteins, Giardia Axoneme Associated Protein (GASP-180), in detail. GASP-180 is a 180 kDa protein containing five ankyrin repeats in a 200 amino acid N-terminal domain separated by a short spacer from an approximately 1375 amino acid coiled-coil domain. Using anti-peptide antibodies raised against a unique 20 amino acid sequence found at the C-terminus, we have determined that GASP-180 is present in cytoskeleton extractions of the parasite and localises to the proximal base of the anterior flagellar axonemes. The combination of the localisation and the structural and functional motifs of GASP-180 make it a strong candidate to participate in control of flagellar activity.  相似文献   

10.
Mechanotransduction in vertebrate hair cells involves a biophysically defined elastic element (the "gating spring") that pulls on the transduction channels. The tip link, a fine filament made of cadherin 23 linking adjacent stereocilia in hair-cell bundles, has been suggested to be the gating spring. However, TRP channels that mediate mechanotransduction in Drosophila, zebrafish, and mice often have cytoplasmic domains containing a large number of ankyrin repeats that are also candidates for the gating spring. We have explored the elastic properties of cadherin and ankyrin repeats through molecular dynamics simulations using crystallographic structures of proteins with one cadherin repeat or 4 and 12 ankyrin repeats, and using models of 17 and 24 ankyrin repeats. The extension and stiffness of large ankyrin-repeat structures were found to match those predicted by the gating-spring model. Our results suggest that ankyrin repeats of TRPA1 and TRPN1 channels serve as the gating spring for mechanotransduction.  相似文献   

11.
Recent reports have offered candidates for key components of the apparatus used for mechanotransduction in hair cells. TRPA1 and cadherin 23 have been proposed to be the transduction channel and component of the tip link, respectively; moreover, ankyrin repeats in TRPA1 have been proposed to be the gating spring. Although these are excellent candidates for the three components, definitive experiments supporting each identification have yet to be performed.  相似文献   

12.
In this study, we investigated the possible interaction between the cationic amino acid transporter (CAT)-1 arginine transporter and ankyrin or fodrin. Because ankyrin and fodrin are substrates for calpain and because hypoxia increases calpain expression and activity in pulmonary artery endothelial cells (PAEC), we also studied the effect of hypoxia on ankyrin, fodrin, and CAT-1 contents in PAEC. Exposure to long-term hypoxia (24 h) inhibited L-arginine uptake by PAEC, and this inhibition was prevented by calpain inhibitor 1. The effects of hypoxia and calpain inhibitor 1 were not associated with changes in CAT-1 transporter content in PAEC plasma membranes. However, hypoxia stimulated the hydrolysis of ankyrin and fodrin in PAEC, and this could be prevented by calpain inhibitor 1. Incubation of solubilized plasma membrane proteins with anti-fodrin antibodies resulted in a 70% depletion of CAT-1 immunoreactivity and in a 60% decrease in L-arginine transport activity in reconstituted proteoliposomes (3,291 +/- 117 vs. 8,101 +/- 481 pmol. mg protein(-1). 3 min(-1) in control). Incubation with anti-ankyrin antibodies had no effect on CAT-1 content or L-arginine transport in reconstituted proteoliposomes. These results demonstrate that CAT-1 arginine transporters in PAEC are associated with fodrin, but not with ankyrin, and that long-term hypoxia decreases L-arginine transport by a calpain-mediated mechanism that may involve fodrin proteolysis.  相似文献   

13.
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective ion channel, which is expressed in nociceptor sensory neurons and transduces chemical, inflammatory, and neuropathic pain signals. Numerous non-reactive compounds and electrophilic compounds, such as endogenous inflammatory mediators and exogenous pungent chemicals, can activate TRPA1. Here we report a 16-? resolution structure of purified, functional, amphipol-stabilized TRPA1 analyzed by single-particle EM. Molecular models of the N and C termini of the channel were generated using the I-TASSER protein structure prediction server and docked into the EM density to provide insight into the TRPA1 subunit organization. This structural analysis suggests a location for critical N-terminal cysteine residues involved in electrophilic activation at the interface between neighboring subunits. Our results indicate that covalent modifications within this pocket may alter interactions between subunits and promote conformational changes that lead to channel activation.  相似文献   

14.
Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.  相似文献   

15.
The transient receptor potential channel A1 (TRPA1) is unique among ion channels of higher vertebrates in that it harbors a large ankyrin repeat domain. The TRPA1 channel is expressed in the inner ear and in nociceptive neurons. It is involved in hearing as well as in the perception of pungent and irritant chemicals. The ankyrin repeat domain has special mechanical properties, which allows it to function as a soft spring that can be extended over a large range while maintaining structural integrity. A calcium-binding site has been experimentally identified within the ankyrin repeats. We built a model of the N-terminal 17 ankyrin repeat structure, including the calcium-binding EF-hand. In our simulations we find the calcium-bound state to be rigid as compared to the calcium-free state. While the end-to-end distance can change by almost 50% in the apo form, these fluctuations are strongly reduced by calcium binding. This increase in stiffness that constraints the end-to-end distance in the holo form is predicted to affect the force acting on the gate of the TRPA1 channel, thereby changing its open probability. Simulations of the transmembrane domain of TRPA1 show that residue N855, which has been associated with familial episodic pain syndrome, forms a strong link between the S4-S5 connecting helix and S1, thereby creating a direct force link between the N-terminus and the gate. The N855S mutation weakens this interaction, thereby reducing the communication between the N-terminus and the transmembrane part of TRPA1.  相似文献   

16.
The Drosophila TRPA channel Painless is required for the function of polymodal nociceptors which detect noxious heat and noxious mechanical stimuli. These functions of Painless are reminiscent of mammalian TRPA channels that have also been implicated in thermal and mechanical nociception. A popular hypothesis to explain the mechanosensory functions of certain TRP channels proposes that a string of ankyrin repeats at the amino termini of these channels acts as an intracellular spring that senses force. Here, we describe the identification of two previously unknown Painless protein isoforms which have fewer ankyrin repeats than the canonical Painless protein. We show that one of these Painless isoforms, that essentially lacks ankyrin repeats, is sufficient to rescue mechanical nociception phenotypes of painless mutant animals but does not rescue thermal nociception phenotypes. In contrast, canonical Painless, which contains Ankyrin repeats, is sufficient to largely rescue thermal nociception but is not capable of rescuing mechanical nociception. Thus, we propose that in the case of Painless, ankryin repeats are important for thermal nociception but not for mechanical nociception.  相似文献   

17.
Safranal, contained in Crocus sativus L., exerts anti‐inflammatory and analgesic effects. However, the underlying mechanisms for such effects are poorly understood. We explored whether safranal targets the transient receptor potential ankyrin 1 (TRPA1) channel, which in nociceptors mediates pain signals. Safranal by binding to specific cysteine/lysine residues, stimulates TRPA1, but not the TRP vanilloid 1 and 4 channels (TRPV1 and TRPV4), evoking calcium responses and currents in human cells and rat and mouse dorsal root ganglion (DRG) neurons. Genetic deletion or pharmacological blockade of TRPA1 attenuated safranal‐evoked release of calcitonin gene‐related peptide (CGRP) from rat and mouse dorsal spinal cord, and acute nociception in mice. Safranal contracted rat urinary bladder isolated strips in a TRPA1‐dependent manner, behaving as a partial agonist. After exposure to safranal the ability of allyl isothiocyanate (TRPA1 agonist), but not that of capsaicin (TRPV1 agonist) or GSK1016790A (TRPV4 agonist), to evoke currents in DRG neurons, contraction of urinary bladder strips and CGRP release from spinal cord slices in rats, and acute nociception in mice underwent desensitization. As previously shown for other herbal extracts, including petasites or parthenolide, safranal might exert analgesic properties by partial agonism and selective desensitization of the TRPA1 channel.  相似文献   

18.
Brazilian green propolis is a popular health supplement because of its various biological properties. The ethanol extract of Brazilian green propolis (EEBP) is characteristic for its herb-like smell and unique pungent taste. However, the ingredients responsible for its pungency have not yet been identified. This study provides the first evidence that artepillin C is the main pungent ingredient in EEBP and that it potently activates human transient receptor potential ankyrin 1 (TRPA1) channels. EEBP was fractionated using column chromatography with a step gradient elution of an ethanol-water solution, and the fractions having the pungent taste were determined by sensory tests. HPLC analysis revealed that the pungent fraction was composed primarily of artepillin C, a prenylated derivative of cinnamic acid. Artepillin C was also identified as the pungent compound of EEBP by organoleptic examiners. Furthermore, the effects of artepillin C and other cinnamic acids found in EEBP on TRPA1 channels were examined by calcium imaging and plate reader-based assays in human TRPA1-expressing cells to investigate the molecular mechanisms underlying their pungent tastes. Artepillin C and baccharin activated the TRPA1 channel strongly, whereas drupanin caused a slight activation and p-coumaric acid showed no activation. Because the EC50 values of artepillin C, baccharin, and allyl isothiocyanate were 1.8 µM, 15.5 µM, and 6.2 µM, respectively, artepillin C was more potent than the typical TRPA1 agonist allyl isothiocyanate. These findings strongly indicate that artepillin C is the main pungent ingredient in EEBP and stimulates a pungent taste by activating TRPA1 channels.  相似文献   

19.
Peripheral mechanical neuropathic pain is a serious side effect of docetaxel chemotherapy for cancer. However, the underlying mechanism for this side effect is unknown. In the present study, we found that docetaxel treatment induced mechanical allodynia in rats. We further revealed that the transient receptor potential ankyrin subtype 1 protein (TRPA1) protein level is upregulated and the TRPA1 activator allyl isothiocyanate induced larger ion currents in the dorsal root ganglion neurons from the docetaxel treated rats. In addition, application the TRPA1 blocker Ap18 reversed the docetaxel‐induced mechanical hypersensitivity. We suggest that the docetaxel‐induced mechanical allodynia is mediated by upregulation of TRPA1 in dorsal root ganglion neurons.  相似文献   

20.
Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号