首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.  相似文献   

2.
Epidemiology studies and clinical trials have suggested that the use of non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, can significantly reduce the incidence of and mortality associated with many cancers, and upregulation of the COX2-PGE(2) pathway in tumor microenvironments might drive several aspects of cancer progression. For these reasons, the mechanisms linking COX blockade and cancer prevention have long been an area of active investigation. During carcinogenesis, COX-2 is expressed both by malignant epithelial cells and by tumor-associated stromal cells, including macrophages, but the observation that NSAIDs are most effective in cancer prevention in APC(min/+) mice if the mice are treated from conception suggests that the COX-2/PGE(2) pathway might also be critical at the earliest stages of tumor development. In this study we take advantage of the translucency and genetic tractability of zebrafish larvae to investigate the involvement of inflammatory cells at cancer initiation, when transformed cells first arise in tissues. We previously showed that innate immune cells supply early transformed cells with proliferative cues and, by using complementary pharmacological and genetic experiments, we now show that prostaglandin E(2) (PGE(2)) is the trophic signal required for this expansion of transformed cells. Our in vivo observations at these early stages of cancer initiation provide a potential mechanistic explanation for why long-term use of low doses of NSAIDs, including aspirin, might reduce cancer onset.  相似文献   

3.
Cysteine string protein α (CSPα), a presynaptic cochaperone for Hsc70, is required for synapse maintenance. Deletion of CSPα leads to neuronal dysfunction, synapse loss, and neurodegeneration. We utilized unbiased, systematic proteomics to identify putative CSPα protein clients. We found 22 such proteins whose levels are selectively decreased in CSPα knockout synapses. Of these putative CSPα protein clients, two directly bind to the CSPα chaperone complex and are bona fide clients. They are the t-SNARE SNAP-25 and the GTPase dynamin 1, which are necessary for synaptic vesicle fusion and fission, respectively. Using hippocampal cultures, we show that CSPα regulates the stability of client proteins and synaptic vesicle number. Our analysis of CSPα-dynamin 1 interactions reveals unexpectedly that CSPα regulates the polymerization of dynamin 1. CSPα, therefore, participates in synaptic vesicle endocytosis and may facilitate exo- and endocytic coupling. These findings advance the understanding of how synapses are functionally and structurally maintained.  相似文献   

4.
We have used a novel method to activate the DNA damage S-phase checkpoint response in Saccharomyces cerevisiae to slow lagging-strand DNA replication by exposing cells expressing a drug-sensitive DNA polymerase δ (L612M-DNA pol δ) to the inhibitory drug phosphonoacetic acid (PAA). PAA-treated pol3-L612M cells arrest as large-budded cells with a single nucleus in the bud neck. This arrest requires all of the components of the S-phase DNA damage checkpoint: Mec1, Rad9, the DNA damage clamp Ddc1-Rad17-Mec3, and the Rad24-dependent clamp loader, but does not depend on Mrc1, which acts as the signaling adapter for the replication checkpoint. In addition to the above components, a fully functional mismatch repair system, including Exo1, is required to activate the S-phase damage checkpoint and for cells to survive drug exposure. We propose that mismatch repair activity produces persisting single-stranded DNA gaps in PAA-treated pol3-L612M cells that are required to increase DNA damage above the threshold needed for checkpoint activation. Our studies have important implications for understanding how cells avoid inappropriate checkpoint activation because of normal discontinuities in lagging-strand replication and identify a role for mismatch repair in checkpoint activation that is needed to maintain genome integrity.  相似文献   

5.
Summary Segments of mitochondrial DNA (mtDNA) carrying the gene for the -subunit of F1-ATPase (atpA) were detected by Southern hybridization with atpA from pea as probe. In the case of Nicotiana langsdorffii, we identified four fragments that are derived from combinations of two different 5 and two different 3 flanking regions of atpA. All four types share the coding region, suggesting that they result from homologous recombination in the coding region of atpA. By contrast, N. glauca generated only one analogous fragment, which indicated the existence of only a single type of atpA in N. glauca. In the case of somatic hybrids obtained by fusion between protoplasts from N. langsdorffii and N. glauca, analysis with EcoRI or HindIII detected three new fragments in addition to the parental fragments. These new fragments can be explained by homologous recombination within the coding region of atpA. Our results show that the coding region of atpA is involved not only in intragenomic homologous recombination but can also be involved in homologous recombination between two parental mitochondrial genomes of somatic hybrids.  相似文献   

6.
Global gene expression profiles of livers from mice, fed diets differing in α-tocopherol content, were compared using DNA microarray technology. Three hundred and eighty nine genes were found to significantly differ in their expression level by a factor of 2 or higher between the high and the low α-tocopherol group. Functional clustering using the EASE software identified 121 genes involved in transport processes. Twenty-one thereof were involved in (synaptic) vesicular trafficking. Up-regulation of syntaxin 1C (Stx1c), vesicle-associated membrane protein 1 (Vamp1), N-ethylmaleimide-sensitive factor (Nsf) and syntaxin binding protein 1 (Stxbp1, Munc18-1) was verified by real time PCR. At a functional level, α-tocopherol increased the secretory response in RBL and PC12 cells. Although here detected in liver, the α-tocopherol-responsive pathways are also relevant to neurotransmission. A role of α-tocopherol in the vesicular transport might not only affect its own absorption and transport but also explain the neural dysfunctions observed in severe α-tocopherol deficiency.  相似文献   

7.
8.
Tropomyosins are widespread actin-binding proteins that influence numerous cellular functions including actin dynamics, cell migration, tumour suppression, and Drosophila oocyte development. Synaptopodin is another actin-binding protein with a more restricted expression pattern in highly dynamic cell compartments such as kidney podocyte foot processes, where it promotes RhoA signalling by blocking the Smurf1-mediated ubiquitination of RhoA. Here, we show that synaptopodin has a shorter half-life but shares functional properties with the highly stable tropomyosin. Transgenic expression of synaptopodin restores oskar mRNA localization in Drosophila oocytes mutant for TmII, thereby rescuing germline differentiation and fertility. Synaptopodin restores stress fibres in tropomyosin-deficient human MDA-MB 231 breast cancer cells and TPMα-depleted fibroblasts. Gene silencing of TPMα but not TPMβ causes loss of stress fibres by promoting Smurf1-mediated ubiquitination and proteasomal degradation of RhoA. Functionally, overexpression of synaptopodin or RhoA(K6,7R) significantly reduces MDA-MB 231 cell migration. Our findings elucidate RhoA stabilization by structurally unrelated actin-binding proteins as a conserved mechanism for regulation of stress fibre dynamics and cell motility in a cell type-specific fashion.  相似文献   

9.
10.
Focal adhesions undergo myosin-II-mediated maturation wherein they grow and change composition to modulate integrin signalling for cell migration, growth and differentiation. To determine how focal adhesion composition is affected by myosin II activity, we performed proteomic analysis of isolated focal adhesions and compared protein abundance in focal adhesions from cells with and without myosin II inhibition. We identified 905 focal adhesion proteins, 459 of which changed in abundance with myosin II inhibition, defining the myosin-II-responsive focal adhesion proteome. The abundance of 73% of the proteins in the myosin-II-responsive focal adhesion proteome was enhanced by contractility, including proteins involved in Rho-mediated focal adhesion maturation and endocytosis- and calpain-dependent focal adhesion disassembly. During myosin II inhibition, 27% of proteins in the myosin-II-responsive focal adhesion proteome, including proteins involved in Rac-mediated lamellipodial protrusion, were enriched in focal adhesions, establishing that focal adhesion protein recruitment is also negatively regulated by contractility. We focused on the Rac guanine nucleotide exchange factor β-Pix, documenting its role in the negative regulation of focal adhesion maturation and the promotion of lamellipodial protrusion and focal adhesion turnover to drive cell migration.  相似文献   

11.
Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix–turn–helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.  相似文献   

12.
TRAF6 is an E3 ubiquitin ligase that plays a pivotal role in the activation of NF-κB by innate and adaptive immunity stimuli. TRAF6 consists of a highly conserved carboxyl terminal TRAF-C domain which is preceded by a coiled coil domain and an amino terminal region that contains a RING domain and a series of putative zinc-finger motifs. The TRAF-C domain contributes to TRAF6 oligomerization and mediates the interaction of TRAF6 with upstream signaling molecules whereas the RING domain comprises the core of the ubiquitin ligase catalytic domain. In order to identify structural elements that are important for TRAF6-induced NF-κB activation, mutational analysis of the TRAF-C and RING domains was performed. Alterations of highly conserved residues of the TRAF-C domain of TRAF6 did not affect significantly the ability of the protein to activate NF-κB. On the other hand a number of functionally important residues (L77, Q82, R88, F118, N121 and E126) for the activation of NF-κB were identified within the RING domain of TRAF6. Interestingly, several homologues of these residues in TRAF2 were shown to have a conserved functional role in TRAF2-induced NF-κB activation and lie at the dimerization interface of the RING domain. Finally, whereas alteration of Q82, R88 and F118 compromised both the K63-linked polyubiquitination of TRAF6 and its ability to activate NF-κB, alteration of L77, N121 and E126 diminished the NF-κB activating function of TRAF6 without affecting TRAF6 K63-linked polyubiquitination. Our results support a conserved functional role of the TRAF RING domain dimerization interface and a potentially necessary but insufficient role for RING-dependent TRAF6 K63-linked polyubiquitination towards NF-κB activation in cells.  相似文献   

13.
14.
Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum.  相似文献   

15.
Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum.  相似文献   

16.
A Trypanosoma congolense cysteine protease (congopain) elicits a high IgG response in trypanotolerant but not in trypanosusceptible cattle during primary infections. As discussed here by Edith Authié, this observation suggests that congopain, like other parasite cysteine proteases, may play a role in pathogenicity and that more efficient immune responses to congopain may contribute to trypanotolerance.  相似文献   

17.
BACKGROUND: A major characteristic of asthmatic airways is an increase in mucin (the glycoprotein component of mucus) producing and secreting cells, which leads to increased mucin release that further clogs constricted airways and contributes markedly to airway obstruction and, in the most severe cases, to status asthmaticus. Asthmatic airways show both a hyperplasia and metaplasia of goblet cells, mucin-producing cells in the epithelium; hyperplasia refers to enhanced numbers of goblet cells in larger airways, while metaplasia refers to the appearance of these cells in smaller airways where they normally are not seen. With the number of mucin-producing and secreting cells increased, there is a coincident hypersecretion of mucin which characterizes asthma. On a cellular level, a major regulator of airway mucin secretion in both in vitro and in vivo studies has been shown to be MARCKS (myristoylated alanine-rich C kinase substrate) protein, a ubiquitous substrate of protein kinase C (PKC). GENERAL SIGNIFICANCE: In this review, properties of MARCKS and how the protein may regulate mucin secretion at a cellular level will be discussed. In addition, the roles of MARCKS in airway inflammation related to both influx of inflammatory cells into the lung and release of granules containing inflammatory mediators by these cells will be explored. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

18.
Optimal defence theory (ODT) attempts to explain variation in plant secondary compounds between different species, different growth conditions and different parts of individual plants. The theory is widely applied to vascular plants and more recently also to seaweeds. Surprisingly, ODT has gained little attention as potential explanation on the distribution of lichen secondary metabolites. In the present study, we analysed intrathalline variation in total phenol content and phenol spectra between reproductive and somatic structures of three foliose lichens, Xanthoria parietina , Vulpicida pinastri and Hypogymnia physodes . The results showed that the concentration of phenolic compounds is higher in sorediate than in non-sorediate lobe ends of V. pinastri and H. physodes as well as in apothecia of X. parietina compared to other parts of the thallus. These results were in accordance with ODT predicting higher allocation of phenols in structures that are most important for the fitness of an individual genet or ramet. This pattern was parallel in all species regardless whether the compounds originate from either acetate-mevalonate or shikimic acid pathways. Moreover, both sexual ( X. parietina apothecia) and asexual (soralia of V. pinastri and H. physodes ) reproductive structures were higher in phenols compared to somatic tissue.  相似文献   

19.
The Bacillus subtilis extracytoplasmic function (ECF) σ factor σ(M) is inducible by, and confers resistance to, several cell envelope-acting antibiotics. Here, we demonstrate that σ(M) is responsible for intrinsic β-lactam resistance, with σ(X) playing a secondary role. Activation of σ(M) upregulates several cell wall biosynthetic enzymes including one, PBP1, shown here to be a target for the beta-lactam cefuroxime. However, σ(M) still plays a major role in cefuroxime resistance even in cells lacking PBP1. To better define the role of σ(M) in β-lactam resistance, we characterized suppressor mutations that restore cefuroxime resistance to a sigM null mutant. The most frequent suppressors inactivated gdpP (yybT) which encodes a cyclic-di-AMP phosphodiesterase (PDE). Intriguingly, σ(M) is a known activator of disA encoding one of three paralogous diadenylate cyclases (DAC). Overproduction of the GdpP PDE greatly sensitized cells to β-lactam antibiotics. Conversely, genetic studies indicate that at least one DAC is required for growth with depletion leading to cell lysis. These findings support a model in which c-di-AMP is an essential signal molecule required for cell wall homeostasis. Other suppressors highlight the roles of ECF σ factors in counteracting the deleterious effects of autolysins and reactive oxygen species in β-lactam-treated cells.  相似文献   

20.
The coding regions of 28 entries of hexaploid wheat gamma-gliadin genes, gene fragments or pseudogenes in GenBank were used for nucleotide alignment. These sequences could be divided into nine subgroups based on nucleotide variation. The chromosomal locations of five of the seven unassigned subgroups were identified through subgroup-specific polymerase chain reactions (PCR) using Chinese Spring group-1 nulli-tetrasomic lines. Multiple single nucleotide polymorphisms (SNPs) and small insertions/deletions were identified in each subgroup. With further mining from wheat expressed sequence tag databases and targeted DNA sequencing, two SNPs were confirmed and one SNP was discovered for genes at the Gli-A1, Gli-B1 and Gli-D1 loci. A modified allele-specific PCR procedure for assaying SNPs was used to generate dominant DNA markers based on these three SNPs. For each of these three SNPs, two allele-specific primer sets were used to test Chinese Spring and 52 commercial Australian wheat varieties representing a range of low-molecular-weight (LMW) alleles. PCR results indicated that all were positive with one of the primer sets and negative with the other, with the exception of three varieties containing the 1BL/1RS chromosomal translocation that were negative for both. Furthermore, markers GliA1.1, GliB1.1 and GliD1.1 were found to be correlated with Glu-A3 a, b or c, Glu-B3 b, c, d or e and Glu-D3 a, b or e LMW glutenin alleles, respectively. Markers GliA1.2, GliB1.2 and GliD1.2 were found to be correlated with the Glu-A3 d or e, Glu-B3 a, g or h and Glu-D3 c alleles, respectively. These results indicated that the gamma-gliadin SNP markers could be used for detecting linked LMW glutenin subunit alleles that are important in determining the quality attributes of wheat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号