首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATPase activity of PotA, a component of the spermidine-preferential uptake system consisting of PotA, -B, -C, and -D, was studied using purified PotA and a PotABC complex on inside-out membrane vesicles. It was found that PotA can form a dimer by disulfide cross-linking but that each PotA molecule functions independently. When PotA was associated with the membrane proteins PotB and PotC, the K(m) value for ATP increased and PotA became much more sensitive to inhibition by spermidine. It was also shown that spermidine uptake in cells was gradually inhibited in parallel with spermidine accumulation in cells. The results suggest that spermidine functions as a feedback inhibitor of spermidine transport. The function of PotA was analyzed using PotA mutants obtained by random mutagenesis. There are two domains in PotA. The NH2-terminal domain (residues 1-250) contains the ATP binding pocket formed in part by residues Cys26, Phe27, Phe45, Cys54, Leu60, and Leu76, the active center of ATPase that includes Val135 and Asp172, and amino acid residues necessary for the interaction with a second PotA subunit (Cys26) and with PotB (Cys54). The COOH-terminal domain (residues 251-378) of PotA contains a site that regulates ATPase activity and a site involved in the spermidine inhibition of ATPase activity.  相似文献   

2.
Amino acid residues involved in cadaverine uptake and cadaverine-lysine antiporter activity were identified by site-directed mutagenesis of the CadB protein. It was found that Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) were strongly involved in both uptake and excretion and that Tyr(55), Glu(76), Tyr(246), Tyr(310), Cys(370), and Glu(377) were moderately involved in both activities. Mutations of Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) mainly affected uptake activity, and Trp(41), Tyr(174), Asp(185), and Glu(408) had weak effects on uptake. The decrease in the activities of the mutants was reflected by an increase in the K(m) value. Mutation of Arg(299) mainly affected excretion, suggesting that Arg(299) is involved in the recognition of the carboxyl group of lysine. These results indicate that amino acid residues involved in both uptake and excretion, or solely in excretion, are located in the cytoplasmic loops and the cytoplasmic side of transmembrane segments, whereas residues involved in uptake were located in the periplasmic loops and the transmembrane segments. The SH group of Cys(370) seemed to be important for uptake and excretion, because both were inhibited by the existence of Cys(125), Cys(389), or Cys(394) together with Cys(370). The relative topology of 12 transmembrane segments was determined by inserting cysteine residues at various sites and measuring the degree of inhibition of transport through crosslinking with Cys(370). The results suggest that a hydrophilic cavity is formed by the transmembrane segments II, III, IV, VI, VII, X, XI, and XII.  相似文献   

3.
4.
The structure and function of a cadaverine-lysine antiporter CadB and a putrescine-ornithine antiporter PotE in Escherichia coli were evaluated using model structures based on the crystal structure of AdiC, an agmatine-arginine antiporter, and the activities of various CadB and PotE mutants. The central cavity of CadB, containing the substrate binding site, was wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE was dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE were strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB were involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE was involved preferentially in putrescine uptake. The results indicate that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. These results also suggest that several amino acid residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine in the periplasm at neutral pH. All the amino acid residues identified as being strongly involved in both the antiport and uptake activities were located on the surface of the transport path consisting of the central cavity and TM12.  相似文献   

5.
Plant beta-glucosidases display varying substrate specificities. The maize beta-glucosidase isozyme Glu1 (ZmGlu1) hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOA-Glc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one), whereas the sorghum beta-glucosidase isozyme Dhr1 (SbDhr1) hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside). Structural data from cocrystals of enzyme-substrate and enzyme-aglycone complexes have shown that five amino acid residues (Phe198, Phe205, Trp378, Phe466, and Ala467) are located in the aglycone-binding site of ZmGlu1 and form the basis of aglycone recognition and binding, hence substrate specificity. To study the mechanism of substrate specificity further, mutant beta-glucosidases were generated by replacing Phe198, Phe205, Asp261, Met263, Phe377, Phe466, Ala467, and Phe473 of Glu1 by Dhr1 counterparts. The effects of mutations on enzyme activity and substrate specificity were studied using both natural and artificial substrates. The simple mutant replacing Phe198 by a valine had the most drastic effect on activity, because the capacity of this enzyme to hydrolyze beta-glucosides was almost completely abolished. The analysis of this mutation was completed by a structural study of the double mutant ZmGlu1-E191D,F198V in complex with the natural substrate. The structure reveals that the single mutation F198V causes a cascade of conformational changes, which are unpredictable by standard molecular modeling techniques. Some other mutations led to drastic effects: replacing Asp261 by an asparagine decreases the catalytic efficiency of this simple mutant by 75% although replacing Tyr473 by a phenylalanine increase its efficiency by 300% and also provides a new substrate specificity by hydrolyzing dhurrin.  相似文献   

6.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

7.
Despite increased awareness and diagnostic facilities, 70–80% of the haemophilia A (HA) patients still remain undiagnosed in India. Very little data is available on prevalent mutations in HA from this country. We report fifty mutations in seventy one Indian HA patients, of which twenty were novel. Ten novel missense mutations [p.Leu11Pro (p.Leu-8Pro), p.Tyr155Ser (p.Tyr136Ser), p.Ile405Thr (p.Ile386Thr), p.Gly582Val (p.Gly563Val) p.Thr696Ile (p.Thr677Ile), p.Tyr737Cys (p.Tyr718Cys), p.Pro1999Arg (p.Pro1980Arg), p.Ser2082Thr (p.Ser2063Thr), p.Leu2197Trp (p.Leu2178Trp), p.Asp2317Glu (p.Asp2298Glu)] two nonsense [p.Lys396* (p.Lys377*), p.Ser2205* (p.Ser2186*)], one insertion [p.Glu1268_Asp1269ins (p.Glu1249_Asp1250)] and seven deletions [p.Leu882del (p.Leu863del), p.Met701del (p.Met682del), p.Leu1223del (p.Leu1204del), p.Trp1961_Tyr1962del (p.Trp1942_Tyr1943del) p.Glu1988del (p.Glu1969del), p.His1841del (p.His1822del), p.Ser2205del (p.Ser2186del)] were identified. Double mutations (p.Asp2317Glu; p.Thr696Ile) were observed in a moderate HA case. Mutations [p. Arg612Cys (p.Arg593Cys), p.Arg2326Gln (p.Arg2307Gln)] known to be predisposing to inhibitors to factor VIII (FVIII) were identified in two patients. 4.6% of the cases were found to be cross reacting material positive (CRM+ve). A wide heterogeneity in the nature of mutations was seen in the present study which has been successfully used for carrier detection and antenatal diagnosis in 10 families affected with severe to moderate HA.  相似文献   

8.
A novel human antibody AR16, targeting the G5 linear epitope of rabies virus glycoprotein (RVG) was shown to have promising antivirus potency. Using AR16, the minimal binding region within G5 was identified as HDFR (residues 261–264), with key residues HDF (residues 261–263) identified by alanine replacement scanning. The key HDF was highly conserved within phylogroup I Lyssaviruses but not those in phylogroup II. Using computer-aided docking and interaction models, not only the key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, Ile101, and Trp166) of AR16 that participated in the interaction with G5 were identified, the van der Waals forces that mediated the epitope–antibody interaction were also revealed. Seven out of eight presumed key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, and Ile101) were located at the variable regions of AR16 heavy chains. A novel mAb cocktail containing AR16 and CR57, has the potential to recognize non-overlapping, non-competing epitopes, and neutralize a broad range of rabies virus.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Specific interactions of human melanocortin-4 receptor (hMC4R) with its nonpeptide and peptide agonists were studied using alanine-scanning mutagenesis. The binding affinities and potencies of two synthetic, small-molecule agonists (THIQ, MB243) were strongly affected by substitutions in transmembrane alpha-helices (TM) 2, 3, 6, and 7 (residues Glu(100), Asp(122), Asp(126), Phe(261), His(264), Leu(265), and Leu(288)). In addition, a I129A mutation primarily affected the binding and potency of THIQ, while F262A, W258A, Y268A mutations impaired interactions with MB243. By contrast, binding affinity and potency of the linear peptide agonist NDP-MSH were substantially reduced only in D126A and H264A mutants. Three-dimensional models of receptor-ligand complexes with their agonists were generated by distance-geometry using the experimental, homology-based, and other structural constraints, including interhelical H-bonds and two disulfide bridges (Cys(40)-Cys(279), Cys(271)-Cys(277)) of hMC4R. In the models, all pharmacophore elements of small-molecule agonists are spatially overlapped with the corresponding key residues (His(6), d-Phe(7), Arg(8), and Trp(9)) of the linear peptide: their charged amine groups interact with acidic residues from TM2 and TM3, similar to His(6) and Arg(6) of NDP-MSH; their substituted piperidines mimic Trp(9) of the peptide and interact with TM5 and TM6, while the d-Phe aromatic rings of all three agonists contact with Leu(133), Trp(258), and Phe(261) residues.  相似文献   

12.
The PotE protein can catalyze both uptake and excretion of putrescine. The K(m) values of putrescine for uptake and excretion are 1.8 and 73 microm, respectively. Uptake of putrescine is dependent on the membrane potential, whereas excretion involves putrescine-ornithine antiporter activity. Amino acids involved in both activities were identified using mutated PotE proteins. It was found that Cys(62), Trp(201), Trp(292), and Tyr(425) were strongly involved in both activities, and that Tyr(92), Cys(210), Cys(285), and Cys(286) were moderately involved in the activities. Mutations of Tyr(78), Trp(90), and Trp(422) mainly affected uptake activity, and the K(m) values for putrescine uptake by these PotE mutants increased greatly, indicating that these amino acids are involved in the high affinity uptake of putrescine by PotE. Mutations of Lys(301) and Tyr(308) mainly affected excretion activity (putrescine-ornithine antiporter activity), and excretion by these mutants was not stimulated by ornithine, indicating that these amino acids are involved in the recognition of ornithine. It was found that the putrescine and ornithine recognition site on PotE is located at the cytoplasmic surface and the vestibule of the pore consisting of 12 transmembrane segments. Based on the results of competition experiments with various putrescine analogues and the disulfide cross-linking of PotE between cytoplasmic loops and the COOH terminus, a model of the putrescine recognition site on PotE consisting of the identified amino acids is presented.  相似文献   

13.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

14.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

15.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H 2 O 2 ) or hydroxyl radicals produced by &#110 radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. &#110 radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met=Cys > Lys > Ile+Leu > Gly > Pro=Phe>Thr+Ala>Trp=Ser>Arg>Asp+Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met >His > Ile+Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by &#110 radiation.  相似文献   

16.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

17.
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.  相似文献   

18.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

19.
We describe a HPLC method coupled to electrospray ionization mass spectrometry (ESI/MS) for quantification and identification of pyrroloquinoline quinone (PQQ) and condensation products formed upon incubation of PQQ with amino acids (IPQ; imidazolopyrroloquinoline and I/OPQ/R; imidazolopyrroloquinoline with attached R-group). More importantly, using these methods we demonstrate the presence of both PQQ and IPQ in human milk in nanomolar to micromolar concentrations. PQQ was incubated with amino acids and condensation products were separated by HPLC. Fractions corresponding to each product were collected and molecular masses were determined using ESI/MS. Ala, Asp, Arg, Cys, Gly, Glu, Ser, Thr, Trp, and Tyr form IPQ upon incubation with PQQ. Yields of IPQ were low (<5%) for Asp and Glu, yet high (>60%) for Thr. In addition to IPQ, Ala, Arg, Cys, Ser, Trp, and Tyr formed IPQ/R derivatives. His, Ile, Leu, Glu, Leu, Lys, Met, and Phe form only IPQ/R derivatives. Proline did not react with PQQ. Mass spectra indicate that PQQ forms stable hydrated carbonyls and decarboxylates easily. Although mass spectra were complicated by the oxidation state of the quinone and decarboxylation of PQQ, these methods are invaluable for the rapid detection of the full range of PQQ adducts in biological matrices.  相似文献   

20.
The importance of van der Waals contact between Glu 35 and Trp 109 to the active-site structure and the catalytic properties of human lysozyme (HL) has been investigated by site-directed mutagenesis. The X-ray analysis of mutant HLs revealed that both the replacement of Glu 35 by Asp or Ala, and the replacement of Trp 109 by Phe or Ala resulted in a significant but localized change in the active-site cleft geometry. A prominent movement of the backbone structure was detected in the region of residues 110 to 120 and in the region of residues 100 to 115 for the mutations concerning Glu 35 and Trp 109, respectively. Accompanied by the displacement of the main-chain atoms with a maximal deviation of C alpha atom position ranging from 0.7 A to 1.0 A, the mutant HLs showed a remarkable change in the catalytic properties against Micrococcus luteus cell substrate as compared with native HL. Although the replacement of Glu 35 by Ala completely abolished the lytic activity, HL-Asp 35 mutant retained a weak but a certain lytic activity, showing the possible involvement of the side-chain carboxylate group of Asp 35 in the catalytic action. The kinetic consequence derived from the replacement of Trp 109 by Phe or Ala together with the result of the structural change suggested that the structural detail of the cleft lobe composed of the residues 100 to 115 centered at Ala 108 was responsible for the turnover in the reaction of HL against the bacterial cell wall substrate. The results revealed that the van der Waals contact between Glu 35 and Trp 109 was an essential determinant in the catalytic action of HL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号