首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activities of hexokinase isoenzymes were determined during insulin-induced hypoglycemia in soluble and total particulate fractions from three regions of rat brain. Type I hexokinase isoenzyme activity showed a small decrease in both soluble and particulate fractions from the cerebral hemispheres. In cerebellum and brain stem, however, Type I isoenzyme showed a decrease only in the soluble fraction. A significant increase was observed in hexokinase Type II isoenzyme from both the fractions, in all the three brain regions 1 h after insulin administration.  相似文献   

2.
1. The distribution and multiple forms of hexokinase activity in lactating rat mammary gland were investigated in alloxan-diabetic rats and in rats treated with anti-insulin serum. It was found that 46% of the total hexokinase of mammary-gland tissue from control rats was in the particulate fraction, but this percentage was decreased in the alloxan-diabetic rats to 11% of the total hexokinase. The hexokinase activity of the soluble fraction was not significantly altered but there was a decrease in the type II/type I quotient. 2. The early changes that occurred on insulin deprivation were studied 1hr. after administration of anti-insulin serum to lactating rats, at which time the hexokinase bound to the particulate fraction had decreased to 11% of the control value and that in the soluble fraction had increased by approx. 50%. The hexokinase type II/type I quotient in the soluble fraction was significantly decreased. These results suggested that there was a release of particulate-bound hexokinase in rats treated with anti-insulin serum.  相似文献   

3.
Glucose catabolism in brain. Intracellular localization of hexokinase   总被引:1,自引:0,他引:1  
A major energy source in brain is glucose, which is committed to metabolism by hexokinase (Type I isozyme), an enzyme usually considered to be bound to the outer mitochondrial membrane. In this study, the subcellular location of hexokinase in brain has been rigorously investigated. Mitochondrial fractions containing hexokinase (greater than 500 milliunits/mg protein) were prepared by two different procedures, and then subjected to density gradient centrifugation before and after loading with barium phosphate, a technique designed to increase the density of the mitochondria. The gradient distribution patterns of both unloaded and loaded preparations show that brain hexokinase does not distribute exclusively with mitochondrial marker enzymes. This is particularly evident in the loaded preparations where there is a clear distinction between the peak activities of hexokinase and mitochondrial markers. The same observation was made when the mitochondrial fraction of either untreated or barium phosphate-loaded mitochondria was subjected to titration with digitonin. In fact, at concentrations of digitonin, which almost completely solubilize marker enzymes for both the inner and outer mitochondrial membranes, a significant fraction of the total hexokinase remains particulate bound. Electron microscopy confirmed that particulate material is still present under these conditions. Significantly, hexokinase is released from particulate material only at high concentrations of digitonin which solubilize the associated microsomal marker NADPH-cytochrome c reductase. Glucose 6-phosphate, which is known to release hexokinase from the brain "mitochondrial fraction" also releases hexokinase from this unidentified particulate component. These results on brain, a normal glucose utilizing tissue, differ from those obtained previously on highly glycolytic tumor cells where identical subfractionation procedures revealed a strictly outer mitochondrial membrane location for particulate hexokinase (Parry, D. M., and Pedersen, P. L. (1983) J. Biol. Chem. 258, 10904-10912). It is concluded that in brain, hexokinase has a greater propensity to localize at nonmitochondrial receptor sites than to those known to be associated with the outer mitochondrial membrane.  相似文献   

4.
In this work, activities of hexokinase isoenzymes Type I and Type II were measured in the soluble and particulate fractions from the brain regions (cerebral hemispheres (cerebrum), cerebellum and brain stem) of the thyroidectomized adult rats as well as of the thyroidectomized rats administered with triiodothyronine. Thyroidectomy generally decreased the hexokinase activity associated with particulate and soluble fractions. Hexokinase Type II isoenzyme was more affected than the Type I isoenzyme. Administration of triiodothyronine to the hypothyroid rats abolished the effect of thyroidectomy. Adult brain enzymes have been generally considered not be affected by thyroid hormones. The data obtained in this work are suggestive of an effect of thyroid hormones on hexokinase in the adult brain. Since the effects of thyroidectomy on the energy metabolism of the heart tissue are well known, the heart tissue was also studied for comparison.  相似文献   

5.
The effect of experimental diabetes on the activity of hexokinase isoenzymes was studied in a wide range of tissues of the rat. In the tissues known to require insulin for glucose phosphorylation, the activity of hexokinase was markedly decreased; the fall being mainly in the Type IV (Glucokinase) in liver and Type II in other tissues, these tissues also exhibit glucose underutilization in diabetes. In the tissues which are commonly known not to require insulin, the activity of Type I hexokinase was significantly increased, these tissues exhibit aspects of glucose overutilization in diabetes in particular kidney and lens. These changes are discussed in relation to Spiro's hypothesis of glucose under and overutilization in tissues in diabetes.  相似文献   

6.
Comparison has been made of the effect of alloxan-diabetes on the multiple forms of hexokinase (EC 2.7.1.1) in adipose tissue and lung. Types I and II hexokinase were distinguished in adipose tissue by their different stabilities to heat treatment, which made it possible to determine the activity of each form spectrophotometrically; additional confirmatory evidence was obtained from starch-gel electrophoresis. Type II hexokinase was markedly depressed in adipose tissue from alloxan-diabetic rats. Lung contained types I, II and III hexokinase, type I predominating. There was no significant change in the pattern of these multiple forms of hexokinase in lung from alloxan-diabetic rats. These results are discussed in relation to current ideas that the insulin-sensitivity of a tissue may be correlated with the content of type II hexokinase.  相似文献   

7.
The effect of insulin on the intracellular localization of rat skeletal muscle hexokinase isozyme II (hexokinase II) was studied in vivo. It was found that after injection of the hormone the glucose concentration in the muscle gradually increases in parallel with the hexokinase II redistribution between the cytosol and the mitochondrial fraction in the direction of the bound form of the enzyme. This effect of insulin is due to glucose, an indispensable participant of the complex formation between the enzyme and the mitochondrial membrane. It was shown that the effect of glucose as a hexokinase II adsorbing reagent is a highly specific one. The hexokinase II binding to mitochondria in the presence of glucose is accompanied by changes in some kinetic properties of the enzyme. A kinetic analysis of catalytic efficiency of the free and bound hexokinase II forms revealed that the catalytic efficiency of hexokinase II within the composition of the enzyme-membrane complex exceeds by two orders of magnitude that of the free enzyme. The data obtained are discussed in the framework of an adsorption mechanism of hexokinase activity regulation in the cell.  相似文献   

8.
1. The intracellular distribution of hexokinase activity was studied in the mucosa of rat and guinea-pig small intestine. In the rat 60% and in the guinea pig 45% of the hexokinase activity of homogenates were recovered in a total particulate fraction that contained only 5-17% of the homogenate activity of hexose phosphate isomerase, pyruvate kinase, lactate dehydrogenase and overall glycolysis (formation of lactate from glucose). 2. Fractionation of homogenates from guineapig small intestine showed that the particulate hexokinase activity was chiefly in the mitochondrial fraction with a small proportion in the nuclei plus brush-border fraction. 3. After chromatography of the particle-free supernatants on DEAE-cellulose, hexokinase types I and II were determined quantitatively. No evidence was obtained for the presence of hexokinase type III or glucokinase. In the preparations from guinea pigs, hexokinase types I and II amounted to 69% and 31% respectively of the eluted activity; the corresponding values for preparations from rats were 5.8% and 94.2%. 4. Total and specific hexokinase activities decreased significantly in homogenates and particle-free supernatants prepared from the intestinal mucosa of rats starved for 36hr. and increased again after re-feeding. The decrease in hexokinase activity in the particle-free supernatant from starved rats was chiefly due to a decrease in the type II enzyme.  相似文献   

9.
Mitochondrial and soluble Type I and Type II hexokinase from various rat tissues differed in their susceptibility to inhibition by glucose-1,6-bisphosphate (Glc-1,6-P2). In tissues where Type I is the predominant form, the mitochondrial enzyme was less susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at high Mg2+ concentration. In tissues where Type II is the predominant form, the mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at low Mg2+ concentration. The results suggest that changes in the intracellular concentrations of Glc-1,6-P2 and Mg2+ under various conditions would affect the activity of the bound and soluble hexokinase from different tissues in a different manner.  相似文献   

10.
Hexokinase is responsible for glucose phosphorylation, a process fundamental to regulating glucose uptake. In some tissues, hexokinase translocates to the mitochondria, thereby increasing its efficiency and decreasing its susceptibility to product inhibition. It may also decrease free radical formation in the mitochondria and prevent apoptosis. Whether hexokinase translocation occurs in the heart is controversial; here, using immunogold labeling for the first time, we provide evidence for this process. Rat hearts (6 groups, n = 6/group), perfused with either glucose- or glucose + oleate (0.4 mmol/l)-containing buffer, were exposed to 30-min insulin stimulation, ischemia, or control perfusion. Hexokinase I (HK I) and hexokinase II (HK II) distributions were then determined. In glucose-perfused hearts, HK I-mitochondrial binding increased from 0.41 +/- 0.04 golds/mm in control hearts to 0.71 +/- 0.10 golds/mm after insulin and to 1.54 +/- 0.38 golds/mm after ischemia (P < 0.05). Similarly, HK II-mitochondrial binding increased from 0.16 +/- 0.02 to 0.53 +/- 0.08 golds/mm with insulin and 0.44 +/- 0.07 golds/mm after ischemia (P < 0.05). Under basal conditions, the fraction of HK I that was mitochondrial bound was five times greater than for HK II; insulin and ischemia caused a fourfold increase in HK II binding but only a doubling in HK I binding. Oleate decreased hexokinase-mitochondrial binding and abolished insulin-mediated translocation of HK I. Our data show that mitochondrial-hexokinase binding increases under insulin or ischemic stimulation and that this translocation is modified by oleate. These events are isoform specific, suggesting that HK I and HK II are independently regulated and implying that they perform different roles in cardiac glucose regulation.  相似文献   

11.
The subcellular distribution and isozyme pattern of hexokinase in rat lung were studied. Of the total hexokinase activity of lung, one-third was bound to mitochondria and one-third of the mitochondrial activity was in a latent form. The overt-bound mitochondrial hexokinase was specifically solubilized by physiological concentrations of glucose 6-phosphate and ATP. Inorganic phosphate partially prevented the solubilization by glucose 6-phosphate (Glc 6-P), whereas Mg2+ ions promoted rebinding of the solubilized enzyme to mitochondria. Thus, the distribution of hexokinase between soluble and particulate forms in vivo is expected to be controlled by the relative concentrations of Glc 6-P, ATP, Pi, and Mg2+. Study of the isozyme pattern showed that hexokinase types I, II, and III constitute the cell-sap enzyme of lung. The overt and latent hexokinase activities could be separately isolated by successive treatments of mitochondria with Glc 6-P and Triton X-100. The overt-bound activity consisted primarily of hexokinase type I, with a small proportion of type II isozyme. The latent activity, on the other hand, exclusively consisted of type I isozyme. Type I hexokinase, the predominant isozyme in lung, was strongly inhibited by intracellular concentration of Glc 6-P and this inhibition was counteracted by Pi. The bound form of hexokinase exhibited a significantly higher apparent Ki for Glc 6-P inhibition and a lower apparent Km for ATP as compared to the soluble form. Thus, the particulate form of hexokinase is expected to promote glycolysis and may provide a mechanism for the high rate of aerobic glycolysis in lung.  相似文献   

12.
Effects of transformation by Rous sarcoma virus on sugar uptake and activity and the subcellular distribution of hexokinase isozymes in chick embryo fibroblasts were examined. Transformation caused a several-fold increase in the maximum velocity for uptake of 2-deoxyglucose without a significant change in Km. Cytochalasin B (CB), was used to differentiate between the effects of transformation on facilitated diffusion and the nonsaturable (CB-insensitive) mode. Transformation was found to stimulate 2-deoxyglucose transport by both mechanisms, but the increase in transport by the CB-insensitive mode was greater. Transformation enhances the activity of hexokinase, the enhancement being confined to the particulate fraction of the enzyme. Heat-inactivation and electrophoretic mobility studies showed that although hexokinase Type I is the major form in both normal and transformed fibroblasts, there is a significant increase in the proportion of the Type II isozyme in the transformed cells.  相似文献   

13.
The flux of glucose through the pentose phosphate pathway, important in relation to the provision of ribose 5-phosphate for nucleotide and RNA synthesis, was decreased by 70% in the diabetic rat heart in parallel with a similar decreased flux through the glycolytic route. A common factor linking the decreased flux through these alternative routes is the known fall in cardiac hexokinase; in these experiments there is a 50% decrease in Type II hexokinase (EC 2.7.1.1.) in both soluble and particulate fractions. The level of fructose 2,6-bisphosphate, a regulator of phosphofructokinase activity, is decreased by 20% in the alloxan diabetic rat heart, this may be a significant additional factor in the marked decrease in the flux of glucose through the glycolytic route in the myocardium in diabetes.  相似文献   

14.
Type 2 diabetes is characterized by decreased rates of insulin-stimulated glucose uptake and utilization, reduced hexokinase II mRNA and enzyme production, and low basal levels of glucose 6-phosphate in insulin-sensitive skeletal muscle and adipose tissues. Hexokinase II is primarily expressed in muscle and adipose tissues where it catalyzes the phosphorylation of glucose to glucose 6-phosphate, a possible rate-limiting step for glucose disposal. To investigate the role of hexokinase II in insulin action and in glucose homeostasis as well as in mouse development, we generated a hexokinase II knock-out mouse. Mice homozygous for hexokinase II deficiency (HKII(-/-)) died at approximately 7.5 days post-fertilization, indicating that hexokinase II is vital for mouse embryogenesis after implantation and before organogenesis. HKII(+/-) mice were viable, fertile, and grew normally. Surprisingly, even though HKII(+/-) mice had significantly reduced (by 50%) hexokinase II mRNA and activity levels in skeletal muscle, heart, and adipose tissue, they did not exhibit impaired insulin action or glucose tolerance even when challenged with a high-fat diet.  相似文献   

15.
Hexokinase plays an important role in normal glucose-utilizing tissues like brain and kidney, and an even more important role in highly malignant cancer cells where it is markedly overexpressed. In both cell types, normal and transformed, a significant portion of the total hexokinase activity is bound to particulate material that sediments upon differential centrifugation with the crude mitochondrial fraction. In the case of brain, particulate binding may constitute most of the total hexokinase activity of the cell, and in highly malignant tumor cells as much as 80 percent of the total. When a variety of techniques are rigorously applied to better define the particulate location of hexokinase within the crude mitochondrial fraction, a striking difference is observed between the distribution of hexokinase in normal and transformed cells. Significantly, particulate hexokinase found in rat brain, kidney, or liver consistently distributes with nonmitochondrial membrane markers whereas the particulate hexokinase of highly glycolytic hepatoma cells distributes with outer mitochondrial membrane markers. These studies indicate that within normal tissues hexokinase binds preferentially to non-mitochondrial receptor sites but upon transformation of such cells to yield poorly differentiated, highly malignant tumors, the overexpressed enzyme binds preferentially to outer mitochondrial membrane receptors. These studies, taken together with the well-known observation that, once solubilized, the particulate hexokinase from a normal tissue can bind to isolated mitochondria, are consistent with the presence in normal tissues of at least two different types of particulate receptors for hexokinase with different subcellular locations. A model which explains this unique transformation-dependent shift in the intracellular location of hexokinase is proposed.  相似文献   

16.
The level of fructose 2,6-bisphosphate is markedly decreased in the rat V.renal gland in diabetes, falling to 23% of the control value. There is parallel decrease in the flux of 14C-labelled glucose through the glycolytic route and tricarboxylic acid cycle. Only minimal changes in hexokinase (EC 2.7.1.1.), a 22% decrease in Type I hexokinase of the soluble fraction, were observed, highlighting the probable significant involvement of fructose 2,6-bisphosphate in the regulation of glycolysis in the adrenal. In contrast, there was evidence for a marked rise in the flux of glucose through the pentose phosphate pathway, which may be linked to enhanced corticoid synthesis in the diabetic state.  相似文献   

17.
The relative rate of synthesis of hexokinase II in the skeletal muscle of the normal, streptozotocin-diabetic, and diabetic insulin-treated rat was determined by the rate of incorporation of [3H]leucine into hexokinase II and the total cytosolic proteins to determine if the rate of hexokinase II synthesis was altered relative to that of the average protein. This relative rate of synthesis of hexokinase II is approximately 1.9 times higher in the normal than in the diabetic rat. The administration of insulin to the diabetic animal increases the rate of hexokinase synthesis to approximately normal levels. An enzyme-linked immunosorbent assay procedure was developed to determine the amount of hexokinase II protein in the skeletal muscle extracts, and immunoprecipitation was utilized to determine the hexokinase II activity. The specific activity of hexokinase II was determined from these analyses. The specific activity of hexokinase II was the same in the skeletal muscle extracts from normal, streptozotocin-diabetic, and diabetic insulin-treated rats. These results suggest that the decrease in muscle hexokinase activity is not caused by the loss of an activator of the enzyme nor by the increased formation of a hexokinase inhibitor in streptozotocin-induced diabetes; rather the decrease in hexokinase II activity reported in diabetic rats relative to normal animals is a result of decreased synthesis coupled to increased degradation in the diabetic relative to the normal animal.  相似文献   

18.
Measurements have been made of the total hexokinase activity and of the relative amounts of types I and II hexokinase in rat mammary gland and at different stages of the lactation cycle. The total hexokinase activity increased during lactation, that of type II increasing to a greater extent than that of type I; the type II/type I activity ratio rose from a pregnancy value of about 1 to a mid-lactation value of 3, returning to 1 on involution. The changes in type II hexokinase activity during the lactation cycle parallel the changes in the insulin sensitivity of mammary-gland tissue. A study of the effect of alloxan-diabetes on mammary-gland hexokinase during the mid-lactation period revealed that, although the total glucose-phosphorylating capacity of the mammary gland was almost unchanged, the relative contributions of type I and type II hexokinases altered, decreasing the type II/type I activity ratio to about 1.  相似文献   

19.
Changes in the subcellular distribution of hexokinase activity from three brain regions and heart were studied during alloxan induced diabetes. There was an overall decrease in the particulate hexokinase with an increase in the soluble form, after different time intervals of the onset of diabetes. Administration of insulin to the diabetic rats showed a partial counteraction of the enzyme changes. A possible regulation of brain hexokinase by metabolite changes is proposed  相似文献   

20.
Abstract— The effect of free fatty acids on rat brain particulate hexokinase was studied in vitro. Hexokinase bound with brain mitochondrial fraction was found to be sensitive to the action of free fatty acids, resulting in the solubilization of at least part of bound enzyme activity into the supernatant. The decrease of total enzyme activity observed at the highest free fatty acid concentration was probably due to the inhibition of hexokinase. The physiological consequence of hexokinase solubilization by low concentrations of free fatty acids, similar to that observed in vivo , is discussed in relation to activity changes of soluble and particulate enzyme forms demonstrated previously under hypoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号